Signalverarbeitungstechniken sind unerlässlich, um kontinuierliche Signale präzise in digitale Formate und umgekehrt umzuwandeln. Wenn ein kontinuierliches Signal mit einer Periode T abgetastet wird, weist das resultierende abgetastete Signal Nachbildungen des ursprünglichen Spektrums im Frequenzbereich auf, die in Abständen angeordnet sind, die der Abtastfrequenz entsprechen. Zur Verarbeitung dieses abgetasteten Signals kann ein Abtast-Halte-Glied angewendet werden, das ein stückweise konstantes Signal erzeugt, indem der Wert jeder Abtastung bis zur nächsten Abtastperiode beibehalten wird.
Im Frequenzbereich modifiziert das Abtast-Halte-Glied das Signal, indem es aufgrund ihrer Fourier-Transformation eine Sinc-Funktion einführt. Diese Sinc-Funktion moduliert die Amplitude der spektralen Replikate und dämpft sie. Trotz dieser Modulation muss das abgetastete Signal noch weiter verarbeitet werden, um die resultierende Wellenform zu glätten.
Die Faltung des abgetasteten Signals mit einer dreieckigen Impulsantwort verfeinert das Signal weiter. Diese Faltungsoperation führt zu einem Zeitbereichssignal, das glatter und frei von abrupten Spitzen ist. Im Frequenzbereich glättet dieser Prozess den zentralen Teil der Kurve und komprimiert die seitlichen Nachbildungen effektiver als das Nullordnungshalten allein, wodurch unerwünschte Spektralkomponenten reduziert werden.
Für eine optimale Signalrekonstruktion wird ein idealer Tiefpassfilter verwendet. Dieser Filter entfernt alle Spektralnachbildungen und lässt nur das ursprüngliche Spektrum durch. Die Impulsantwort im Zeitbereich des idealen Filters ist durch eine Sinc-Funktion gekennzeichnet, die, wenn sie mit dem abgetasteten Signal gefaltet wird, ein glattes und kontinuierliches Zeitbereichssignal erzeugt.
Diese Methode, bekannt als bandbegrenzte Interpolation, stellt sicher, dass das rekonstruierte Signal dem ursprünglichen kontinuierlichen Signal sehr nahe kommt. Durch sorgfältiges Filtern des abgetasteten Signals und Ausnutzen der Eigenschaften der Sinc-Funktion minimiert die bandbegrenzte Interpolation Verzerrungen und Artefakte und erreicht so eine genaue Signalrekonstruktion. Dieser Prozess ist in Anwendungen wie digitalen Audio- und Kommunikationssystemen von entscheidender Bedeutung, bei denen die Aufrechterhaltung der Signalintegrität während der Digital-Analog-Umwandlung für die Bewahrung der Qualität und Wiedergabetreue des Originalsignals von entscheidender Bedeutung ist.
Aus Kapitel 18:
Now Playing
Sampling
145 Ansichten
Sampling
246 Ansichten
Sampling
178 Ansichten
Sampling
100 Ansichten
Sampling
109 Ansichten
Sampling
161 Ansichten
Sampling
143 Ansichten
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten