Войдите в систему

Cartesian vector notation is a valuable tool in mechanical engineering for representing vectors in three-dimensional space, performing vector operations such as determining the gradient, divergence, and curl, and expressing physical quantities such as the displacement, velocity, acceleration, and force. By using Cartesian vector notation, engineers can more easily analyze and solve problems in various areas of mechanical engineering, including dynamics, kinematics, and fluid mechanics. This notation represents a vector in terms of three components along the x, y, and z axes, respectively.

For example, suppose we have a vector A pointing in the direction (3, −4, 5). In that case, it can be represented using Cartesian vector notation as A = 3i - 4j + 5k, where i, j, and k are unit vectors along the x, y, and z axes, respectively. The unit vectors are defined as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Cartesian vector notation can be used to perform various vector operations, such as addition, subtraction, and scalar multiplication. For example, if we have two vectors, A = 3i - 4j + 5k and B = 2i + 7j - 3k, we can add them using Cartesian vector notation as follows:

Equation 1

We can also subtract them as follows:

Equation 2

Теги

Cartesian Vector NotationMechanical EngineeringVector OperationsGradientDivergenceCurlDisplacementVelocityAccelerationForceDynamicsKinematicsFluid MechanicsUnit VectorsVector AdditionVector SubtractionScalar Multiplication

Из главы 2:

article

Now Playing

2.9 : Cartesian Vector Notation

Force Vectors

667 Просмотры

article

2.1 : Скаляры и векторы

Force Vectors

1.1K Просмотры

article

2.2 : Векторные операции

Force Vectors

1.1K Просмотры

article

2.3 : Введение в силу

Force Vectors

429 Просмотры

article

2.4 : Классификация силы

Force Vectors

1.0K Просмотры

article

2.5 : Векторное сложение сил

Force Vectors

557 Просмотры

article

2.6 : Двумерная силовая система

Force Vectors

818 Просмотры

article

2.7 : Двумерная силовая система: решение проблем

Force Vectors

497 Просмотры

article

2.8 : Скалярная нотация

Force Vectors

606 Просмотры

article

2.10 : Направление косинусов вектора

Force Vectors

384 Просмотры

article

2.11 : Трехмерная силовая система

Force Vectors

1.9K Просмотры

article

2.12 : Трехмерная силовая система: решение проблем

Force Vectors

572 Просмотры

article

2.13 : Векторы положения

Force Vectors

677 Просмотры

article

2.14 : Вектор силы вдоль линии

Force Vectors

431 Просмотры

article

2.15 : Скалярное произведение

Force Vectors

249 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены