Accedi

Cartesian vector notation is a valuable tool in mechanical engineering for representing vectors in three-dimensional space, performing vector operations such as determining the gradient, divergence, and curl, and expressing physical quantities such as the displacement, velocity, acceleration, and force. By using Cartesian vector notation, engineers can more easily analyze and solve problems in various areas of mechanical engineering, including dynamics, kinematics, and fluid mechanics. This notation represents a vector in terms of three components along the x, y, and z axes, respectively.

For example, suppose we have a vector A pointing in the direction (3, −4, 5). In that case, it can be represented using Cartesian vector notation as A = 3i - 4j + 5k, where i, j, and k are unit vectors along the x, y, and z axes, respectively. The unit vectors are defined as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Cartesian vector notation can be used to perform various vector operations, such as addition, subtraction, and scalar multiplication. For example, if we have two vectors, A = 3i - 4j + 5k and B = 2i + 7j - 3k, we can add them using Cartesian vector notation as follows:

Equation 1

We can also subtract them as follows:

Equation 2

Tags

Cartesian Vector NotationMechanical EngineeringVector OperationsGradientDivergenceCurlDisplacementVelocityAccelerationForceDynamicsKinematicsFluid MechanicsUnit VectorsVector AdditionVector SubtractionScalar Multiplication

Dal capitolo 2:

article

Now Playing

2.9 : Cartesian Vector Notation

Force Vectors

667 Visualizzazioni

article

2.1 : Scalari e vettori

Force Vectors

1.1K Visualizzazioni

article

2.2 : Operazioni vettoriali

Force Vectors

1.1K Visualizzazioni

article

2.3 : Introduzione alla forza

Force Vectors

429 Visualizzazioni

article

2.4 : Classificazione delle forze

Force Vectors

1.0K Visualizzazioni

article

2.5 : Addizione vettoriale di forze

Force Vectors

557 Visualizzazioni

article

2.6 : Sistema di forze bidimensionali

Force Vectors

818 Visualizzazioni

article

2.7 : Sistema di forze bidimensionale: risoluzione dei problemi

Force Vectors

497 Visualizzazioni

article

2.8 : Notazione scalare

Force Vectors

606 Visualizzazioni

article

2.10 : Coseni di direzione di un vettore

Force Vectors

384 Visualizzazioni

article

2.11 : Sistema di Forze Tridimensionali

Force Vectors

1.9K Visualizzazioni

article

2.12 : Sistema di Forze Tridimensionale:Risoluzione dei Problemi

Force Vectors

572 Visualizzazioni

article

2.13 : Vettori di posizione

Force Vectors

677 Visualizzazioni

article

2.14 : Vettore di forza lungo una linea

Force Vectors

431 Visualizzazioni

article

2.15 : Prodotto Dot

Force Vectors

249 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati