Zaloguj się

Cartesian vector notation is a valuable tool in mechanical engineering for representing vectors in three-dimensional space, performing vector operations such as determining the gradient, divergence, and curl, and expressing physical quantities such as the displacement, velocity, acceleration, and force. By using Cartesian vector notation, engineers can more easily analyze and solve problems in various areas of mechanical engineering, including dynamics, kinematics, and fluid mechanics. This notation represents a vector in terms of three components along the x, y, and z axes, respectively.

For example, suppose we have a vector A pointing in the direction (3, −4, 5). In that case, it can be represented using Cartesian vector notation as A = 3i - 4j + 5k, where i, j, and k are unit vectors along the x, y, and z axes, respectively. The unit vectors are defined as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Cartesian vector notation can be used to perform various vector operations, such as addition, subtraction, and scalar multiplication. For example, if we have two vectors, A = 3i - 4j + 5k and B = 2i + 7j - 3k, we can add them using Cartesian vector notation as follows:

Equation 1

We can also subtract them as follows:

Equation 2

Tagi

Cartesian Vector NotationMechanical EngineeringVector OperationsGradientDivergenceCurlDisplacementVelocityAccelerationForceDynamicsKinematicsFluid MechanicsUnit VectorsVector AdditionVector SubtractionScalar Multiplication

Z rozdziału 2:

article

Now Playing

2.9 : Cartesian Vector Notation

Force Vectors

667 Wyświetleń

article

2.1 : Skalar i wektory

Force Vectors

1.1K Wyświetleń

article

2.2 : Operacje wektorowe

Force Vectors

1.1K Wyświetleń

article

2.3 : Wprowadzenie do siły

Force Vectors

429 Wyświetleń

article

2.4 : Klasyfikacja siły

Force Vectors

1.0K Wyświetleń

article

2.5 : Dodawanie wektorów sił

Force Vectors

556 Wyświetleń

article

2.6 : Dwuwymiarowy układ sił

Force Vectors

814 Wyświetleń

article

2.7 : Dwuwymiarowy układ sił: rozwiązywanie problemów

Force Vectors

497 Wyświetleń

article

2.8 : Notacja skalarna

Force Vectors

606 Wyświetleń

article

2.10 : Kierunek cosinusów wektora

Force Vectors

384 Wyświetleń

article

2.11 : Trójwymiarowy układ sił

Force Vectors

1.9K Wyświetleń

article

2.12 : Trójwymiarowy układ sił: rozwiązywanie problemów

Force Vectors

572 Wyświetleń

article

2.13 : Wektory położenia

Force Vectors

677 Wyświetleń

article

2.14 : Wektor siły wzdłuż linii

Force Vectors

431 Wyświetleń

article

2.15 : Iloczyn skalarny

Force Vectors

249 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone