Zaloguj się

If acceleration as a function of time is known, then velocity and position functions can be derived using integral calculus. For constant acceleration, the integral equations refer to the first and second kinematic equations for velocity and position functions, respectively.

Consider an example to calculate the velocity and position from the acceleration function. A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is −1/4·tm/s2. Let's determine the procedure to calculate the velocity and position function of the motorboat.

Let's take time, t = 0, when the boat starts to decelerate. Now, the velocity function can be calculated using the integral of the acceleration function

Equation1

Using the expression of acceleration in the above equation, the velocity as a function of time is calculated to be

Equation2

The constant of integration C1 is calculated to be 5 m/s using the value of initial time and velocity.

Hence, the velocity as a function of time reduces to

Equation3

Integrating the derived velocity function with respect to time, the position function is calculated. The position as a function of time is

Equation4

Again, using the initial conditions, the constant of integration C2 is calculated to be zero.

Thus, the position as a function of time reduces to

Equation5

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

Tagi

Velocity FunctionPosition FunctionIntegral CalculusAcceleration FunctionConstant AccelerationKinematic EquationsMotorboat DecelerationIntegration ConstantsInitial ConditionsDisplacement CalculationTime Variable

Z rozdziału 3:

article

Now Playing

3.14 : Velocity and Position by Integral Method

Motion Along a Straight Line

5.8K Wyświetleń

article

3.1 : Położenie i przemieszczenie

Motion Along a Straight Line

17.0K Wyświetleń

article

3.2 : Średnia prędkość

Motion Along a Straight Line

17.9K Wyświetleń

article

3.3 : Prędkość chwilowa - I

Motion Along a Straight Line

12.2K Wyświetleń

article

3.4 : Prędkość chwilowa - II

Motion Along a Straight Line

9.0K Wyświetleń

article

3.5 : Średnie przyspieszenie

Motion Along a Straight Line

9.3K Wyświetleń

article

3.6 : Natychmiastowe przyspieszenie

Motion Along a Straight Line

7.5K Wyświetleń

article

3.7 : Równania kinematyczne - I

Motion Along a Straight Line

10.1K Wyświetleń

article

3.8 : Równania kinematyczne - II

Motion Along a Straight Line

9.1K Wyświetleń

article

3.9 : Równania kinematyczne - III

Motion Along a Straight Line

7.3K Wyświetleń

article

3.10 : Równania kinematyczne: rozwiązywanie problemów

Motion Along a Straight Line

11.7K Wyświetleń

article

3.11 : Ciała swobodnie spadające: Wprowadzenie

Motion Along a Straight Line

7.7K Wyświetleń

article

3.12 : Ciała swobodnie spadające: Przykład

Motion Along a Straight Line

15.3K Wyświetleń

article

3.13 : Prędkość i położenie metodą graficzną

Motion Along a Straight Line

7.1K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone