S'identifier

If acceleration as a function of time is known, then velocity and position functions can be derived using integral calculus. For constant acceleration, the integral equations refer to the first and second kinematic equations for velocity and position functions, respectively.

Consider an example to calculate the velocity and position from the acceleration function. A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is −1/4·tm/s2. Let's determine the procedure to calculate the velocity and position function of the motorboat.

Let's take time, t = 0, when the boat starts to decelerate. Now, the velocity function can be calculated using the integral of the acceleration function

Equation1

Using the expression of acceleration in the above equation, the velocity as a function of time is calculated to be

Equation2

The constant of integration C1 is calculated to be 5 m/s using the value of initial time and velocity.

Hence, the velocity as a function of time reduces to

Equation3

Integrating the derived velocity function with respect to time, the position function is calculated. The position as a function of time is

Equation4

Again, using the initial conditions, the constant of integration C2 is calculated to be zero.

Thus, the position as a function of time reduces to

Equation5

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

Tags

Velocity FunctionPosition FunctionIntegral CalculusAcceleration FunctionConstant AccelerationKinematic EquationsMotorboat DecelerationIntegration ConstantsInitial ConditionsDisplacement CalculationTime Variable

Du chapitre 3:

article

Now Playing

3.14 : Velocity and Position by Integral Method

Mouvement rectiligne

5.8K Vues

article

3.1 : Position et déplacement

Mouvement rectiligne

17.0K Vues

article

3.2 : Vitesse moyenne

Mouvement rectiligne

17.9K Vues

article

3.3 : Vitesse instantanée - I

Mouvement rectiligne

12.2K Vues

article

3.4 : Vitesse instantanée - II

Mouvement rectiligne

9.0K Vues

article

3.5 : Accélération moyenne

Mouvement rectiligne

9.3K Vues

article

3.6 : Accélération instantanée

Mouvement rectiligne

7.5K Vues

article

3.7 : Lois de mouvement - I

Mouvement rectiligne

10.1K Vues

article

3.8 : Lois de mouvement - II

Mouvement rectiligne

9.1K Vues

article

3.9 : Lois de mouvement - III

Mouvement rectiligne

7.3K Vues

article

3.10 : Lois de mouvement : résoudre les problèmes

Mouvement rectiligne

11.7K Vues

article

3.11 : Chute libre des corps : Introduction

Mouvement rectiligne

7.7K Vues

article

3.12 : Chute libre des corps : Exemple

Mouvement rectiligne

15.3K Vues

article

3.13 : Utilisation d'un graphique pour déterminer la vitesse et la position

Mouvement rectiligne

7.1K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.