JoVE Logo

Accedi

27.8 : Teorema di Castigliano: Risoluzione dei problemi

La deflessione di una trave semplicemente appoggiata che trasporta un carico concentrato centrale può essere analizzata utilizzando i principi della meccanica strutturale, in particolare applicando il teorema di Castigliano. Questo teorema mette in relazione lo spostamento nel punto di applicazione del carico con le derivate parziali dell'energia di deformazione nella struttura. La trave semplicemente appoggiata con un carico concentrato al centro presenta forze di reazione simmetriche sui supporti, ciascuno dei quali sopporta metà del carico. Da queste reazioni si ricava il momento flettente in qualsiasi punto lungo la trave, calcolato sulla distanza dal supporto più vicino.

Il teorema di Castigliano indica che la freccia nel punto in cui è applicato il carico è determinata differenziando l'energia di deformazione della trave rispetto al carico. L'energia di deformazione viene calcolata in base al momento flettente lungo la trave, integrato sulla sua lunghezza. Per questa trave, l'energia di deformazione dovuta alla flessione viene calcolata dal quadrato dell'espressione del momento flettente, integrato lungo metà della lunghezza della trave.

Equation 1

Poiché la trave è simmetrica, questo valore viene raddoppiato per tenere conto dell'intera trave e viene calcolata la deflessione al centro della trave. Dipende dall'entità del carico, dal cubo della lunghezza della trave ed è inversamente proporzionale al prodotto del momento d'inerzia per il modulo elastico della sezione trasversale della trave.

Equation 2

Tags

Castigliano s TheoremDeflectionSimply Supported BeamCentral Point LoadStructural MechanicsStrain EnergyBending MomentSymmetric Reaction ForcesLoad Application PointMoment Of InertiaElastic ModulusCross sectionProblem Solving

Dal capitolo 27:

article

Now Playing

27.8 : Teorema di Castigliano: Risoluzione dei problemi

Energy Methods

524 Visualizzazioni

article

27.1 : tensione energetica

Energy Methods

324 Visualizzazioni

article

27.2 : Densità di deformazione-energia

Energy Methods

324 Visualizzazioni

article

27.3 : Energia di deformazione elastica per stress normali

Energy Methods

121 Visualizzazioni

article

27.4 : Energia di deformazione elastica per stress di taglio

Energy Methods

137 Visualizzazioni

article

27.5 : carico d'impatto

Energy Methods

168 Visualizzazioni

article

27.6 : Carico d'impatto su una trave a sbalzo

Energy Methods

348 Visualizzazioni

article

27.7 : Teorema di Castigliano

Energy Methods

333 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati