JoVE Logo

Войдите в систему

8.11 : Screw: Problem Solving

In mechanical engineering, the interaction between a threaded screw shaft and a plate gear involves analyzing the resisting torque on the plate gear that can be overpowered when a specific torsional moment is applied to the shaft. To better comprehend this concept, consider a generic situation with a threaded screw shaft with a given mean radius and lead and a plate gear with a specified mean radius. The coefficient of static friction between the screw and gear is also provided.

To evaluate the resisting torque on the plate gear that can be overpowered when a certain torsional moment is applied to the shaft, the first step is to calculate the static friction angle using the coefficient of static friction. The static friction angle, denoted as φ, is the angle whose tangent is equal to the coefficient of static friction.

Next, the lead angle is determined by substituting the values of the lead and mean radius. It is equal to the ratio of the lead to the circumference of the shaft.

The axial force, denoted as F, is the force acting along the axis of the shaft that causes the plate gear to rotate. For an impending motion in a specific direction, the axial force developed in the shaft can be determined by using a formula involving the torsional moment, static friction angle, lead angle, and mean radius.

Equation 1

The resisting torque on the plate gear equals the product of the shaft's axial force and the mean radius of the gear. By substituting the values, the resisting torque that can overpower the applied torsional moment can be determined.

Also, if the static friction angle is greater than the lead angle, the shaft is self-locking even if the moment is removed.

Finally, one can determine whether the shaft is self-locking through a series of calculations involving the static friction angle, lead angle, axial force, and resisting torque. This analysis is crucial in understanding the mechanical behavior of shafts and gears in various engineering applications.

Теги

Screw ShaftPlate GearResisting TorqueTorsional MomentStatic FrictionLead AngleMean RadiusAxial ForceSelf lockingMechanical EngineeringFriction AngleTorque CalculationEngineering Applications

Из главы 8:

article

Now Playing

8.11 : Screw: Problem Solving

Friction

381 Просмотры

article

8.1 : Сухое трение

Friction

325 Просмотры

article

8.2 : Статическое трение

Friction

698 Просмотры

article

8.3 : Кинетическое трение

Friction

874 Просмотры

article

8.4 : Характеристики сухого трения

Friction

447 Просмотры

article

8.5 : Типы проблем трения

Friction

497 Просмотры

article

8.6 : Трение: решение проблем

Friction

186 Просмотры

article

8.7 : Клинья

Friction

1.0K Просмотры

article

8.8 : Силы трения на винтах

Friction

1.1K Просмотры

article

8.9 : Надвигающееся движение вверх

Friction

231 Просмотры

article

8.10 : Самоблокирующийся винт

Friction

1.4K Просмотры

article

8.12 : Силы трения на плоских ремнях

Friction

832 Просмотры

article

8.13 : Плоские ремни: решение проблем

Friction

316 Просмотры

article

8.14 : Шарнирные подшипники

Friction

1.1K Просмотры

article

8.15 : Подшипники кольца

Friction

1.2K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены