JoVE Logo

Zaloguj się

In mechanical engineering, the interaction between a threaded screw shaft and a plate gear involves analyzing the resisting torque on the plate gear that can be overpowered when a specific torsional moment is applied to the shaft. To better comprehend this concept, consider a generic situation with a threaded screw shaft with a given mean radius and lead and a plate gear with a specified mean radius. The coefficient of static friction between the screw and gear is also provided.

To evaluate the resisting torque on the plate gear that can be overpowered when a certain torsional moment is applied to the shaft, the first step is to calculate the static friction angle using the coefficient of static friction. The static friction angle, denoted as φ, is the angle whose tangent is equal to the coefficient of static friction.

Next, the lead angle is determined by substituting the values of the lead and mean radius. It is equal to the ratio of the lead to the circumference of the shaft.

The axial force, denoted as F, is the force acting along the axis of the shaft that causes the plate gear to rotate. For an impending motion in a specific direction, the axial force developed in the shaft can be determined by using a formula involving the torsional moment, static friction angle, lead angle, and mean radius.

Equation 1

The resisting torque on the plate gear equals the product of the shaft's axial force and the mean radius of the gear. By substituting the values, the resisting torque that can overpower the applied torsional moment can be determined.

Also, if the static friction angle is greater than the lead angle, the shaft is self-locking even if the moment is removed.

Finally, one can determine whether the shaft is self-locking through a series of calculations involving the static friction angle, lead angle, axial force, and resisting torque. This analysis is crucial in understanding the mechanical behavior of shafts and gears in various engineering applications.

Tagi

Screw ShaftPlate GearResisting TorqueTorsional MomentStatic FrictionLead AngleMean RadiusAxial ForceSelf lockingMechanical EngineeringFriction AngleTorque CalculationEngineering Applications

Z rozdziału 8:

article

Now Playing

8.11 : Screw: Problem Solving

Friction

379 Wyświetleń

article

8.1 : Tarcie suche

Friction

324 Wyświetleń

article

8.2 : Tarcie statyczne

Friction

694 Wyświetleń

article

8.3 : Tarcie kinetyczne

Friction

865 Wyświetleń

article

8.4 : Charakterystyka tarcia suchego

Friction

442 Wyświetleń

article

8.5 : Rodzaje problemów z tarciem

Friction

493 Wyświetleń

article

8.6 : Tarcie: rozwiązywanie problemów

Friction

185 Wyświetleń

article

8.7 : Kliny

Friction

1.0K Wyświetleń

article

8.8 : Siły tarcia na

Friction

1.1K Wyświetleń

article

8.9 : Zbliżający się ruch w górę

Friction

228 Wyświetleń

article

8.10 : Śruba samoblokująca

Friction

1.4K Wyświetleń

article

8.12 : Siły tarcia na pasach płaskich

Friction

831 Wyświetleń

article

8.13 : Pasy płaskie: rozwiązywanie problemów

Friction

316 Wyświetleń

article

8.14 : Łożyska przegubowe

Friction

1.1K Wyświetleń

article

8.15 : Łożyska kołnierzowe

Friction

1.2K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone