Zaloguj się

A buffer can prevent a sudden drop or increase in the pH of a solution after the addition of a strong acid or base up to its buffering capacity; however, such addition of a strong acid or base does result in the slight pH change of the solution. The small pH change can be calculated by determining the resulting change in the concentration of buffer components, i.e., a weak acid and its conjugate base or vice versa. The concentrations obtained using these stoichiometric calculations can be used to determine the solution’s final pH using the Henderson-Hasselbalch equation or an ICE table.

For example, a buffered solution contains 0.65 mol of formic acid and sodium formate. As the concentration of the weak acid and its conjugate base is the same here, the solution’s pH is equal to the pKa of the weak acid, which is 3.74 in this case. If 0.05 mol HNO3 is added into this solution, the resultant changes in the concentration of the formic acid and sodium formate can be determined by stoichiometric calculations as shown in the table below.

H+ (aq) HCOO(aq) HCOOH (aq)
Before addition (M) ~0.00 mol 0.65 mol 0.65 mol
Addition (M) 0.050 mol - -
After addition (M) ~0.00 mol 0.60 mol 0.70 mol

The solution’s final pH can then be determined by plugging in changed concentrations of formic acid and sodium formate into the Henderson-Hasselbalch equation.

Eq1

Thus, the addition of 0.05 mol of HNO3 reduces the pH of the solution from 3.74 to 3.67.

Similarly, if 0.10 mol NaOH is added into the same solution, the resultant changes in the concentration of the formic acid and sodium formate can be determined by stoichiometric calculations as shown in the table below.

OH (aq) HCOOH (aq) HCOO (aq) H2O (l)
Before addition (M) ~0.00 mol 0.65 mol 0.65 mol
Addition (M) 0.10 mol - - ­-
After addition (M) ~0.00 mol 0.55 mol 0.75 mol ­-

The final pH of the solution can then be determined by plugging in changed concentrations of formic acid and sodium formate into the Henderson-Hasselbalch equation.

Eq2

Thus, the addition of 0.10 mol NaOH increases the pH of the solution from 3.74 to 3.87.

Tagi

PH ChangesBuffer SolutionStrong AcidStrong BaseStoichiometric CalculationEquilibrium CalculationICE TableHenderson Hasselbalch EquationHydrofluoric AcidSodium FluoridePKaWeak AcidConjugate BaseMolesHydrochloric Acid

Z rozdziału 16:

article

Now Playing

16.4 : Calculating pH Changes in a Buffer Solution

Acid-base and Solubility Equilibria

52.2K Wyświetleń

article

16.1 : Wspólny efekt jonowy

Acid-base and Solubility Equilibria

40.6K Wyświetleń

article

16.2 : Buffers

Acid-base and Solubility Equilibria

162.9K Wyświetleń

article

16.3 : Równanie Hendersona-Hasselbalcha

Acid-base and Solubility Equilibria

67.5K Wyświetleń

article

16.5 : Skuteczność bufora

Acid-base and Solubility Equilibria

48.1K Wyświetleń

article

16.6 : Obliczenia miareczkowania: mocny kwas - mocna zasada

Acid-base and Solubility Equilibria

28.7K Wyświetleń

article

16.7 : Obliczenia miareczkowania: słaby kwas - mocna zasada

Acid-base and Solubility Equilibria

43.2K Wyświetleń

article

16.8 : Wskaźniki

Acid-base and Solubility Equilibria

47.5K Wyświetleń

article

16.9 : Miareczkowanie kwasu poliprotonowego

Acid-base and Solubility Equilibria

95.3K Wyświetleń

article

16.10 : Równowaga rozpuszczalności

Acid-base and Solubility Equilibria

51.0K Wyświetleń

article

16.11 : Czynniki wpływające na rozpuszczalność

Acid-base and Solubility Equilibria

32.7K Wyświetleń

article

16.12 : Powstawanie jonów złożonych

Acid-base and Solubility Equilibria

22.9K Wyświetleń

article

16.13 : Wytrącanie jonów

Acid-base and Solubility Equilibria

27.3K Wyświetleń

article

16.14 : Analiza jakościowa

Acid-base and Solubility Equilibria

19.7K Wyświetleń

article

16.15 : Krzywe miareczkowania kwasowo-zasadowego

Acid-base and Solubility Equilibria

125.3K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone