Sign In

A buffer can prevent a sudden drop or increase in the pH of a solution after the addition of a strong acid or base up to its buffering capacity; however, such addition of a strong acid or base does result in the slight pH change of the solution. The small pH change can be calculated by determining the resulting change in the concentration of buffer components, i.e., a weak acid and its conjugate base or vice versa. The concentrations obtained using these stoichiometric calculations can be used to determine the solution’s final pH using the Henderson-Hasselbalch equation or an ICE table.

For example, a buffered solution contains 0.65 mol of formic acid and sodium formate. As the concentration of the weak acid and its conjugate base is the same here, the solution’s pH is equal to the pKa of the weak acid, which is 3.74 in this case. If 0.05 mol HNO3 is added into this solution, the resultant changes in the concentration of the formic acid and sodium formate can be determined by stoichiometric calculations as shown in the table below.

H+ (aq) HCOO(aq) HCOOH (aq)
Before addition (M) ~0.00 mol 0.65 mol 0.65 mol
Addition (M) 0.050 mol - -
After addition (M) ~0.00 mol 0.60 mol 0.70 mol

The solution’s final pH can then be determined by plugging in changed concentrations of formic acid and sodium formate into the Henderson-Hasselbalch equation.

Eq1

Thus, the addition of 0.05 mol of HNO3 reduces the pH of the solution from 3.74 to 3.67.

Similarly, if 0.10 mol NaOH is added into the same solution, the resultant changes in the concentration of the formic acid and sodium formate can be determined by stoichiometric calculations as shown in the table below.

OH (aq) HCOOH (aq) HCOO (aq) H2O (l)
Before addition (M) ~0.00 mol 0.65 mol 0.65 mol
Addition (M) 0.10 mol - - ­-
After addition (M) ~0.00 mol 0.55 mol 0.75 mol ­-

The final pH of the solution can then be determined by plugging in changed concentrations of formic acid and sodium formate into the Henderson-Hasselbalch equation.

Eq2

Thus, the addition of 0.10 mol NaOH increases the pH of the solution from 3.74 to 3.87.

Tags

PH ChangesBuffer SolutionStrong AcidStrong BaseStoichiometric CalculationEquilibrium CalculationICE TableHenderson Hasselbalch EquationHydrofluoric AcidSodium FluoridePKaWeak AcidConjugate BaseMolesHydrochloric Acid

From Chapter 16:

article

Now Playing

16.4 : חישוב שינוייpH בתמיסת בופר

Acid-base and Solubility Equilibria

52.2K Views

article

16.1 : אפקט היון המשותף

Acid-base and Solubility Equilibria

40.6K Views

article

16.2 : בופרים

Acid-base and Solubility Equilibria

162.9K Views

article

16.3 : משואת הנדרסון-האסבלך

Acid-base and Solubility Equilibria

67.6K Views

article

16.5 : יעילות בופר

Acid-base and Solubility Equilibria

48.1K Views

article

16.6 : חישובי טיטרציה: חומצה חזקה- בסיס חזק

Acid-base and Solubility Equilibria

28.7K Views

article

16.7 : חישובי טיטרציה: חומצה חלשה- בסיס חלש

Acid-base and Solubility Equilibria

43.4K Views

article

16.8 : אינדיקטורים

Acid-base and Solubility Equilibria

47.5K Views

article

16.9 : טירציה של חומצה רב פרוטית

Acid-base and Solubility Equilibria

95.4K Views

article

16.10 : שיווי משקל מסיסות

Acid-base and Solubility Equilibria

51.1K Views

article

16.11 : גורמים המשפיעים על מסיסות

Acid-base and Solubility Equilibria

32.8K Views

article

16.12 : יצירת יוני קומפלקס

Acid-base and Solubility Equilibria

22.9K Views

article

16.13 : שיקוע של יוני

Acid-base and Solubility Equilibria

27.3K Views

article

16.14 : אנליזה איכותית

Acid-base and Solubility Equilibria

19.8K Views

article

16.15 : עקומות טירציית חומצה-בסיס

Acid-base and Solubility Equilibria

125.4K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved