로그인

Consider a curve representing sample data drawn randomly from a normally distributed population. One must construct confidence intervals to estimate or to test a claim regarding the population standard deviation. For example, a 95% confidence interval covers 95% of the area under the curve, and the remaining 5% is equally distributed on either side of the curve. To achieve such confidence intervals, one must determine the critical values. The critical values are simply the values separating the likely values from the unlikely ones.

As the chi-square distribution is asymmetrical, the left and right critical values separating an area of 2.5% or a significance level of 0.025 on either side of the curve are determined separately using tables. In the table for the chi-square critical values, critical values are found by first locating the row corresponding to the appropriate number of degrees of freedom df, where df = n - 1, n represents the sample size. The significance level α is used to determine the column. The right-tailed value is calculated by locating the area of 0.025 at the top of the table. Since the table is based on cumulative values from the right, for the left-tailed value, subtract 0.025 from the total area under the curve, that is, 1, and yields 0.975. The value in the corresponding column of 0.975 gives the left-tailed critical value.

Tags

Critical ValuesChi square DistributionConfidence IntervalsStandard DeviationDegrees Of FreedomSignificance LevelLeft tailed ValueRight tailed ValueCumulative ValuesSample Size

장에서 8:

article

Now Playing

8.6 : Finding Critical Values for Chi-Square

Distributions

2.8K Views

article

8.1 : 모집단 모수를 추정하기 위한 분포

Distributions

4.0K Views

article

8.2 : 자유도

Distributions

3.0K Views

article

8.3 : 스튜던트 t 분포

Distributions

5.7K Views

article

8.4 : z 분포와 t 분포 중에서 선택

Distributions

2.7K Views

article

8.5 : 카이제곱 분포

Distributions

3.4K Views

article

8.7 : 모집단 표준 편차 추정

Distributions

2.9K Views

article

8.8 : 적합도 테스트

Distributions

3.2K Views

article

8.9 : 적합도 검정에서 예상되는 빈도

Distributions

2.5K Views

article

8.10 : 분할표

Distributions

2.4K Views

article

8.11 : 독립성 시험 소개

Distributions

2.0K Views

article

8.12 : 독립성 검정을 위한 가설 검정

Distributions

3.4K Views

article

8.13 : 예상 빈도 결정

Distributions

2.1K Views

article

8.14 : 균질성 테스트

Distributions

1.9K Views

article

8.15 : F 분포

Distributions

3.6K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유