JoVE Logo

S'identifier

Consider a curve representing sample data drawn randomly from a normally distributed population. One must construct confidence intervals to estimate or to test a claim regarding the population standard deviation. For example, a 95% confidence interval covers 95% of the area under the curve, and the remaining 5% is equally distributed on either side of the curve. To achieve such confidence intervals, one must determine the critical values. The critical values are simply the values separating the likely values from the unlikely ones.

As the chi-square distribution is asymmetrical, the left and right critical values separating an area of 2.5% or a significance level of 0.025 on either side of the curve are determined separately using tables. In the table for the chi-square critical values, critical values are found by first locating the row corresponding to the appropriate number of degrees of freedom df, where df = n - 1, n represents the sample size. The significance level α is used to determine the column. The right-tailed value is calculated by locating the area of 0.025 at the top of the table. Since the table is based on cumulative values from the right, for the left-tailed value, subtract 0.025 from the total area under the curve, that is, 1, and yields 0.975. The value in the corresponding column of 0.975 gives the left-tailed critical value.

Tags

Critical ValuesChi square DistributionConfidence IntervalsStandard DeviationDegrees Of FreedomSignificance LevelLeft tailed ValueRight tailed ValueCumulative ValuesSample Size

Du chapitre 8:

article

Now Playing

8.6 : Finding Critical Values for Chi-Square

Distributions

2.8K Vues

article

8.1 : Distributions pour estimer le paramètre de population

Distributions

4.0K Vues

article

8.2 : Degrés de liberté

Distributions

3.0K Vues

article

8.3 : Distribution des étudiants

Distributions

5.8K Vues

article

8.4 : Choisir entre la distribution z et t

Distributions

2.7K Vues

article

8.5 : Distribution du khi-deux

Distributions

3.4K Vues

article

8.7 : Estimation de l’écart-type de la population

Distributions

3.0K Vues

article

8.8 : Test de qualité de l’ajustement

Distributions

3.2K Vues

article

8.9 : Fréquences attendues dans les essais de qualité de l’ajustement

Distributions

2.5K Vues

article

8.10 : Tableau de contingence

Distributions

2.4K Vues

article

8.11 : Introduction au test d’indépendance

Distributions

2.1K Vues

article

8.12 : Test d’hypothèse pour test d’indépendance

Distributions

3.4K Vues

article

8.13 : Détermination de la fréquence prévue

Distributions

2.1K Vues

article

8.14 : Test d’homogénéité

Distributions

1.9K Vues

article

8.15 : F Répartition

Distributions

3.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.