JoVE Logo

로그인

8.3 : Halogenation of Alkenes

Halogenation is the addition of chlorine or bromine across the double bond in an alkene to yield a vicinal dihalide. The reaction occurs in the presence of inert and non-nucleophilic solvents, such as methylene chloride, chloroform, or carbon tetrachloride.

Consider the bromination of cyclopentene. Molecular bromine is polarized in the proximity of the π electrons of cyclopentene. An electrophilic bromine atom adds across the double bond, forming a cyclic bromonium ion intermediate.

Cyclopentene to bromonium ion formation; chemical reaction diagram with Br2 intermediate.

A bromonium ion is more stable than the analogous carbocation, as it has more covalent bonds and all the atoms have filled octets.

Bromine stability comparison in organic molecules; diagram shows less stable vs more stable structures.

In the second step, the nucleophile, a bromide ion, attacks one of the carbon atoms in the bridged bromonium ion. Due to the non-availability of bonding orbitals and steric crowding, the nucleophile approaches the antibonding orbitals, pointing opposite to the carbon–bromine bond. This accounts for the anti addition.

Bromination reaction mechanism; cyclohexene diagram; electrophilic addition of bromine; organic chemistry.

Thus, the addition of two bromine atoms takes place from the opposite faces of the double bond in cyclopentene to yield trans-1,2-dibromocyclopentane.

The configuration of the starting alkene decides the stereochemical outcome for halogenation reactions. For example, the addition across cis-2-butene generates a pair of enantiomers, while addition across trans-2-butene produces a meso compound. Therefore, the halogenation of alkenes is a diastereospecific reaction.

Tags

HalogenationAlkenesChlorineBromineVicinal DihalideInert SolventsNon nucleophilic SolventsMethylene ChlorideChloroformCarbon TetrachlorideBromination Of CyclopentenePolarized BromineElectrophilic Bromine AtomCyclic Bromonium Ion IntermediateStability Of Bromonium IonCarbocationNucleophileBridged Bromonium IonAnti AdditionTrans 12 dibromocyclopentaneStereochemical OutcomeCis 2 buteneTrans 2 buteneEnantiomersMeso Compound

장에서 8:

article

Now Playing

8.3 : Halogenation of Alkenes

Reactions of Alkenes

15.2K Views

article

8.1 : 친전자성 첨가물의 위치 선택성-과산화물 효과

Reactions of Alkenes

8.3K Views

article

8.2 : 자유 라디칼 연쇄 반응 및 알켄의 중합

Reactions of Alkenes

7.7K Views

article

8.4 : Alkenes에서 Halohydrin의 형성

Reactions of Alkenes

12.7K Views

article

8.5 : Alkenes의 Acid-Catalyzed Hydration (산성 촉매 수화)

Reactions of Alkenes

13.5K Views

article

8.6 : Regioselectivity and Stereochemistry of Acid-Catalyzed Hydration(산-촉매 수화의 위치 선택성 및 입체화학)

Reactions of Alkenes

8.3K Views

article

8.7 : Oxymercuration-알켄 환원

Reactions of Alkenes

7.4K Views

article

8.8 : Hydroboration-Alkenes의 산화

Reactions of Alkenes

7.7K Views

article

8.9 : Hydroboration의 위치 선택성 및 입체화학(Regioselectivity and Stereochemistry of Hydroboration)

Reactions of Alkenes

8.0K Views

article

8.10 : 알켄의 산화 : 오스뮴 테트라 옥사이드를 사용한 Syn Dihydroxylation

Reactions of Alkenes

9.7K Views

article

8.11 : 알켄의 산화 : 과망간산 칼륨을 사용한 Syn Dihydroxylation

Reactions of Alkenes

10.6K Views

article

8.12 : 알켄의 산화 : 과산화산을 사용한 안티 디하이드록실화

Reactions of Alkenes

5.5K Views

article

8.13 : 알켄의 산화적 분열: Ozonolysis

Reactions of Alkenes

9.8K Views

article

8.14 : 알켄의 환원: 촉매 수소화

Reactions of Alkenes

11.8K Views

article

8.15 : 알켄의 환원: 비대칭 촉매 수소화

Reactions of Alkenes

3.2K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유