Nucleophilic substitution in α-halocarbonyl compounds can be achieved via an SN2 pathway. The reaction in α-haloketones is generally carried out with less basic nucleophiles. The use of strong basic nucleophiles leads to the generation of α-haloenolate ions, which often participate in other side reactions.
However, α-haloacids undergo SN2 reactions with strong basic nucleophiles. Under this condition, the base abstracts the acidic proton of the acid forming its conjugate base. The anion further participates in a substitution reaction, and the final acidification results in α-substituted acids.
In α-halocarbonyl compounds, nucleophilic substitution via an SN1 pathway is forbidden, as it generates less stable α-carbocation intermediate.
Dal capitolo 15:
Now Playing
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.2K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.9K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.4K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.5K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.1K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.5K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.0K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.6K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.4K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.0K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.3K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.9K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
2.5K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
13.5K Visualizzazioni
α-Carbon Chemistry: Enols, Enolates, and Enamines
3.2K Visualizzazioni
See More