JoVE Logo

S'identifier

Enzyme kinetics studies the rates of biochemical reactions. Scientists monitor the reaction rates for a particular enzymatic reaction at various substrate concentrations. Additional trials with inhibitors or other molecules that affect the reaction rate may also be performed.

The experimenter can then plot the initial reaction rate or velocity (Vo) of a given trial against the substrate concentration ([S]) to obtain a graph of the reaction properties. For many enzymatic reactions involving a single substrate, this data fits the Michaelis-Menten equation, an equation derived by Leonor Michaelis and Maud Menten.

Eq1

The equation estimates the maximum velocity (Vmax) and the Michaelis constant (KM) for the enzyme being studied and is based on the following assumptions:

  1. No product is present at the start of the reaction.
  2. The rate of enzyme-substrate complex formation equals the rate of dissociation and breakdown into products.
  3. The enzyme concentration is minimal compared to the substrate concentration.
  4. Only the initial reaction rates are measured.
  5. The enzyme is present either in the free form or in the enzyme-substrate complex.

Different rearrangements of the Michaelis-Menten equation, such as the Lineweaver-Burke, Eadie-Hofsteot, and Hanes-Woolf plots, are alternate ways to graph kinetic parameters. The Lineweaver-Burke or double reciprocal plot is often used to estimate the KM and the Vmax. The plot uses the reciprocals values of the x and y-axis from the Michaelis-Menten plot. Mathematically, the y-intercept equals 1/Vmax, and the x-intercept equals −1/KM.

The Lineweaver-Burke plot can be used to visually differentiate between inhibitor types – competitive, non-competitive, and uncompetitive. Different rearrangements of the Michaelis-Menten equation, such as the Eadie-Hofstee and Hanes-Woolf plots, are also used to determine kinetic parameters.

Tags

Enzyme KineticsReaction RateSubstrate ConcentrationMichaelis Menten EquationVmaxKMLineweaver Burke PlotEadie Hofstee PlotHanes Woolf PlotEnzyme substrate ComplexInhibitor TypesCompetitive InhibitionNon competitive InhibitionUncompetitive Inhibition

Du chapitre 3:

article

Now Playing

3.13 : Introduction to Enzyme Kinetics

Énergie et catalyse

19.4K Vues

article

3.1 : La première loi de la thermodynamique

Énergie et catalyse

5.3K Vues

article

3.2 : La seconde loi de la thermodynamique

Énergie et catalyse

5.0K Vues

article

3.3 : Enthalpie au sein de la cellule

Énergie et catalyse

5.7K Vues

article

3.4 : Entropie au sein de la cellule

Énergie et catalyse

10.2K Vues

article

3.5 : Une introduction à l'enthalpie libre

Énergie et catalyse

8.0K Vues

article

3.6 : Réactions endergoniques et exergoniques dans la cellule

Énergie et catalyse

14.3K Vues

article

3.7 : La constante d'équilibre des liaisons et la force des liaisons

Énergie et catalyse

8.9K Vues

article

3.8 : Énergie libre et équilibre

Énergie et catalyse

6.0K Vues

article

3.9 : Les conditions hors équilibre dans la cellule

Énergie et catalyse

4.1K Vues

article

3.10 : Oxydation et réduction des molécules organiques

Énergie et catalyse

5.9K Vues

article

3.11 : Introduction aux enzymes

Énergie et catalyse

16.8K Vues

article

3.12 : Enzymes et énergie d'activation

Énergie et catalyse

11.4K Vues

article

3.14 : Constante catalytique et efficacité

Énergie et catalyse

9.7K Vues

article

3.15 : Enzymes parfaites

Énergie et catalyse

3.8K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.