JoVE Logo

Oturum Aç

Bu içeriği görüntülemek için JoVE aboneliği gereklidir.

Assessing Immunological Synapse Topology through Live-Cell Imaging

-- views • 1:39 min

TRANSKRIPT

Take a microscope dish with buffer containing transfected, superantigen-treated human endothelial cells, with the superantigens complexed to class II MHC molecules.

These artificial antigen-presenting cells co-express different fluorescent proteins on their membranes and cytoplasm.

Next, introduce T lymphocytes, which interact with the superantigens on the endothelial cells via T cell receptors, forming a stable cell-cell junction, an immunological synapse.

This triggers T lymphocyte cytoskeleton rearrangement, initiating cell spreading and actin extension, resulting in the formation of invadosome-like protrusions, or ILPs, enriched with actin, adhesion, and signaling molecules.

Adhesion molecules bind specific receptors on the endothelial cells, strengthening the interaction.

Synapse formation activates T lymphocyte signaling pathways, elevating intracellular calcium levels and stabilizing ILPs.

ILPs induce localized membrane bending in endothelial cells, forming transient surface rings.

Under a fluorescence microscope, analyze the synapse topology comprising dark circular zones of fluorescent cytoplasm displacement in the endothelial cell, co-localized with differently fluorescent membrane rings around ILPs, confirming immunological synapse formation.

article

03:25

Assessing Immunological Synapse Topology through Live-Cell Imaging

İlgili Videolar

27 Views

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır