JoVE Logo

Войдите в систему

1.11 : Current Dividers

In parallel electrical connections, resistors are linked between the same pair of nodes, creating an equal voltage across each resistor. Kirchhoff's current law is applied to these connections, establishing that the sum of currents through these resistors equals the source current. Utilizing Ohm's law, the source current is determined as the product of the source voltage and the sum of the reciprocals of individual resistances. This relationship simplifies the process of finding the current flowing through each resistor.

In a parallel arrangement, the source current distributes itself among the resistors in inverse proportion to their resistances, exemplifying the "current division" principle within a current divider circuit.

Parallel resistors can be approached as a single equivalent resistor, simplifying circuit complexity. The equivalent resistor's value is calculated as the product of individual resistances divided by their sum. Two parallel resistors yield an equivalent resistance by multiplying their resistances and dividing by their sum. This concept extends to circuits featuring more than two resistors in parallel, with the equivalent resistance determined using a similar approach.

Equation1

Conductance, the reciprocal of resistance, is a valuable parameter in series and parallel connections. In series resistors, the equivalent conductance stems from the product of individual conductances divided by their sum. Conversely, in parallel configurations, it represents the sum of the individual conductances. The use of conductance calculations offers convenience when handling parallel resistors. The equivalent conductance of parallel resistors becomes the sum of their individual conductances, mirroring the equivalent resistance calculation for series resistors.

In practical scenarios, the combination of resistors in both series and parallel configurations aids in simplifying complex networks. This simplification facilitates the analysis and design of electrical circuits while preserving the original network's current-voltage (i-v) characteristics within the simplified setup.

Теги

Parallel Electrical ConnectionsResistorsKirchhoff s Current LawSource CurrentOhm s LawCurrent Division PrincipleEquivalent ResistorConductanceEquivalent ConductanceSeries ResistorsCircuit AnalysisElectrical CircuitsNetwork Simplification

Из главы 1:

article

Now Playing

1.11 : Current Dividers

Basics of Electric Circuits

392 Просмотры

article

1.1 : Заряд и ток

Basics of Electric Circuits

2.1K Просмотры

article

1.2 : Напряжение

Basics of Electric Circuits

1.3K Просмотры

article

1.3 : Власть и энергетика

Basics of Electric Circuits

657 Просмотры

article

1.4 : Элементы электрической цепи

Basics of Electric Circuits

655 Просмотры

article

1.5 : Терминология схем

Basics of Electric Circuits

609 Просмотры

article

1.6 : Независимые и зависимые источники

Basics of Electric Circuits

1.0K Просмотры

article

1.7 : Закон Ома

Basics of Electric Circuits

684 Просмотры

article

1.8 : Действующий закон Кирхгофа

Basics of Electric Circuits

956 Просмотры

article

1.9 : Закон напряжения Кирхгофа

Basics of Electric Circuits

652 Просмотры

article

1.10 : Делители напряжения

Basics of Electric Circuits

476 Просмотры

article

1.12 : Эквивалентное сопротивление

Basics of Electric Circuits

381 Просмотры

article

1.13 : Пример конструкции: резистивный сенсорный экран

Basics of Electric Circuits

278 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены