Войдите в систему

When designing or analyzing a structural member, it is important to consider the internal loadings developed within the member. These internal loadings include normal force, shear force, and bending moment. Engineers can ensure that the structural member can support the applied external forces by calculating these internal loadings.

To illustrate this, let's consider a beam OC of 5 kN, inclined at an angle of 53.13° with the horizontal and supported at both ends. Determine the internal loadings at point A.

Equation 1

For this, first, we need to calculate the reaction force at point C. We can do this by using the moment equation about point O and substituting the values.

Equation 1

This gives us the necessary information to determine the reaction force at point C in the horizontal direction, which is 1.87 kN.

Next, the weight of the beam, which is assumed to be acting at the center, is resolved into its components. Once we have calculated the reaction force at point C and resolved the weight of the beam, we can move on to determining the internal loadings at point A.

To accomplish this, consider an imaginary line passing through point A, dividing the beam into two sections. Then, a free-body diagram of the segment with the minimum unknown forces is drawn. By recalling the equilibrium equation and substituting the values of forces along the horizontal direction, the normal force in the section is obtained to be -5.12 kN. The negative sign indicates that the normal force on the cross-section is opposite to the direction assumed.

Similarly, by using the equilibrium equation and substituting the values of the vertical forces, we can determine the shear force in the section, which is 1.5 kN. Finally, using the moment equation, we can determine the magnitude of the moment at point A, which is obtained to be 8.94 kNᐧm.

By following these steps, the internal loadings at point A of the structural member can be determined. This problem-solving process is crucial for ensuring structural members can withstand the forces they are designed to support.

Теги

Internal LoadingsStructural MemberNormal ForceShear ForceBending MomentReaction ForceEquilibrium EquationFree body DiagramProblem solving ProcessStructural AnalysisBeam DesignApplied External Forces

Из главы 7:

article

Now Playing

7.4 : Internal Loadings in Structural Members: Problem Solving

Internal Forces

1.2K Просмотры

article

7.1 : Правило знаков

Internal Forces

1.8K Просмотры

article

7.2 : Нормальная и поперечная сила

Internal Forces

1.9K Просмотры

article

7.3 : Изгибающие и крутящие моменты

Internal Forces

3.3K Просмотры

article

7.5 : Балки

Internal Forces

1.3K Просмотры

article

7.6 : Диаграмма сдвига

Internal Forces

679 Просмотры

article

7.7 : Диаграмма изгибающего момента

Internal Forces

896 Просмотры

article

7.8 : Зависимость между распределенной нагрузкой и сдвигом

Internal Forces

563 Просмотры

article

7.9 : Соотношение между сдвигом и изгибающим моментом

Internal Forces

893 Просмотры

article

7.10 : Диаграмма сдвиговых и изгибающих моментов: решение проблем

Internal Forces

1.2K Просмотры

article

7.11 : Кабель, подвергающийся воздействию сосредоточенных нагрузок

Internal Forces

741 Просмотры

article

7.12 : Кабель под действием распределенной нагрузки

Internal Forces

587 Просмотры

article

7.13 : Кабель под действием собственного веса

Internal Forces

380 Просмотры

article

7.14 : Кабель: решение проблем

Internal Forces

289 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены