JoVE Logo

Войдите в систему

4.19 : Load along a Single Axis

In structural engineering, the analysis of beams subjected to varying loads is a critical aspect of understanding the behavior and performance of these structural elements. A common scenario involves a beam subjected to a combination of different load distributions.

Consider a beam of length L subjected to a varying load, which is a combination of parabolic and trapezoidal load distribution along the x-axis. In this case, it is essential to determine the resultant loads, their locations, and the centroid of the combined area to predict the beam's response under these loading conditions.

Firstly, examine the parabolic load distribution. Consider a differential element of force dR acting over a small length dx. To determine the resultant load for the parabolic area, the differential element dR is integrated over the entire length of the load. The location of this resultant load is at the centroid of the parabolic area. The moment principle is applied to find the x-coordinate of the centroid, which states that the first moment of the area about an axis is equal to the product of the area and the distance of its centroid from the axis.

Next, the trapezoidal load distribution is analyzed by dividing it into two rectangular and triangular regions. The resultant loads for these individual regions act at their respective centroids. For the rectangular area, the centroid is positioned at half the length of the rectangle. For the triangular area, the centroid is located one-third of the base length away from the vertical side of the triangle.

By adding the individual resultant loads for the rectangular and triangular areas, the resultant load for the entire trapezoidal area can be determined. The location of the resultant load passes through the centroid of the trapezoidal area, which can also be determined using the moment principle.

Similarly, by adding the resultant loads of both the parabolic and trapezoidal areas, the total resultant load acting on the beam can be determined. The location of the total resultant load passes through the centroid of the combined area, which can be further determined using the moment principle.

Теги

Structural EngineeringBeam AnalysisVarying LoadsLoad DistributionParabolic LoadTrapezoidal LoadResultant LoadCentroidMoment PrincipleRectangular RegionTriangular RegionDifferential ElementLoading Conditions

Из главы 4:

article

Now Playing

4.19 : Load along a Single Axis

Force System Resultants

265 Просмотры

article

4.1 : Момент силы: скалярная формулировка

Force System Resultants

672 Просмотры

article

4.2 : Момент силы: решение проблем

Force System Resultants

546 Просмотры

article

4.3 : Результирующий момент: скалярная формулировка

Force System Resultants

1.3K Просмотры

article

4.4 : Момент силы: векторная формулировка

Force System Resultants

2.9K Просмотры

article

4.5 : Декартова форма для векторной формулировки

Force System Resultants

557 Просмотры

article

4.6 : Результирующий момент: векторная формулировка

Force System Resultants

3.0K Просмотры

article

4.7 : Принцип моментов

Force System Resultants

1.5K Просмотры

article

4.8 : Принцип моментов: решение проблем

Force System Resultants

783 Просмотры

article

4.9 : Момент силы, вращающейся вокруг оси: скалярный

Force System Resultants

305 Просмотры

article

4.10 : Момент силы вокруг оси: вектор

Force System Resultants

309 Просмотры

article

4.11 : Пара

Force System Resultants

391 Просмотры

article

4.12 : Пары: скалярная и векторная формулировка

Force System Resultants

211 Просмотры

article

4.13 : Равнозначные пары

Force System Resultants

251 Просмотры

article

4.14 : Момент пары: решение проблемы

Force System Resultants

840 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены