JoVE Logo

Войдите в систему

2.10 : Direction Cosines of a Vector

Direction cosines, which help describe the orientation of a vector with respect to the coordinate axes, are an essential concept in the field of vector calculus. Consider vector A that is expressed in terms of the Cartesian vector form using i, j, and k unit vectors. The magnitude of vector A is defined as the square root of the sum of the squares of its components. The direction of this vector with respect to the x, y, and z axes is defined by the coordinate direction angles α, β, and γ, respectively. These angles can be determined by projecting vector A onto the respective axes, known as the direction cosines of vector A.

Static equilibrium; formula: cos α = Ax/A; mathematical equation for vector component analysis.

cosine law equation; trigonometry formula; mathematical expression

Trigonometry equation cos γ = Az/A for vector component analysis in educational diagram.

A significant relationship can be formulated by squaring the equation that defines the direction cosines of A. This relationship is given by the sum of the squares of the direction cosines, which equals one.

Static equilibrium equation, cos²α + cos²β + cos²γ = 1, formula for spatial geometry concepts.

Using this equation, if only two of the coordinate angles are known, the third angle can be found. Direction cosines help describe the orientation of a vector based on its components in space, making them an important concept in a wide range of fields, including physics, engineering, and computer graphics. By understanding the direction cosines of a vector, one can easily determine its orientation and displacement, which, thus, enables the development of accurate models and simulations.

Теги

Direction CosinesVector OrientationVector CalculusCartesian VectorUnit VectorsMagnitude Of VectorCoordinate Direction AnglesProjectionRelationship Of Direction CosinesPhysicsEngineeringComputer GraphicsAccurate ModelsSimulations

Из главы 2:

article

Now Playing

2.10 : Direction Cosines of a Vector

Force Vectors

461 Просмотры

article

2.1 : Скаляры и векторы

Force Vectors

1.2K Просмотры

article

2.2 : Векторные операции

Force Vectors

1.1K Просмотры

article

2.3 : Введение в силу

Force Vectors

465 Просмотры

article

2.4 : Классификация силы

Force Vectors

1.1K Просмотры

article

2.5 : Векторное сложение сил

Force Vectors

761 Просмотры

article

2.6 : Двумерная силовая система

Force Vectors

871 Просмотры

article

2.7 : Двумерная силовая система: решение проблем

Force Vectors

539 Просмотры

article

2.8 : Скалярная нотация

Force Vectors

651 Просмотры

article

2.9 : Декартова векторная нотация

Force Vectors

732 Просмотры

article

2.11 : Трехмерная силовая система

Force Vectors

2.0K Просмотры

article

2.12 : Трехмерная силовая система: решение проблем

Force Vectors

622 Просмотры

article

2.13 : Векторы положения

Force Vectors

793 Просмотры

article

2.14 : Вектор силы вдоль линии

Force Vectors

468 Просмотры

article

2.15 : Скалярное произведение

Force Vectors

290 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены