JoVE Logo

Войдите в систему

8.2 : NMR Spectroscopy: Chemical Shift Overview

The position of the absorption signal of a sample is reported relative to the position of the signal of tetramethylsilane (TMS), which is added as an internal reference while recording spectra. The difference between the absorption frequencies of the sample and TMS (in Hz) is divided by the spectrometer operating frequency (in MHz) to obtain a dimensionless quantity called the chemical shift. It is reported on the δ (delta) scale and expressed in parts per million.

For instance, the proton signal from benzene is 436 Hz higher than the TMS signal in a 60 MHz spectrometer, while the difference is 2181 Hz in a 300 MHz instrument. In both cases, the obtained chemical shift is 7.27 ppm, indicating that it is independent of the instrument operating frequency. The low chemical shifts on the right side of the spectrum correspond to low-frequency upfield signals from shielded nuclei in electron-dense environments. In contrast, the higher chemical shifts correspond to high-frequency downfield signals from deshielded nuclei in electron-poor settings.

Теги

NMR SpectroscopyChemical ShiftTetramethylsilaneTMSAbsorption SignalSpectrometer FrequencyDimensionless QuantityDelta ScaleProton SignalBenzenePpmUpfield SignalsDownfield SignalsShielded NucleiDeshielded Nuclei

Из главы 8:

article

Now Playing

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Просмотры

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

607 Просмотры

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.5K Просмотры

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Просмотры

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Просмотры

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.3K Просмотры

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.5K Просмотры

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Просмотры

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Просмотры

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.9K Просмотры

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

876 Просмотры

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

937 Просмотры

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

959 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены