Войдите в систему

We previously discussed angular velocity for uniform circular motion, however not all motion is uniform. Envision an ice skater spinning with their arms outstretched; when they pull their arms inward, their angular velocity increases. Additionally, think about a computer's hard disk slowing to a halt as the angular velocity decreases. The faster the change in angular velocity, the greater the angular acceleration. The instantaneous angular acceleration is defined as the derivative of angular velocity with respect to time. The units of angular acceleration are (rad/s)/s, or radians per second squared.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way that we relate the tangential speed to the angular velocity. Thus, tangential acceleration is the radius times the angular acceleration.

The following points represent a problem-solving strategy that can be applied to rotational kinematics:

  1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.
  3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).
  4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in terms of a translational analog. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions complete with units. Be sure to use units of radians for angles.
  5. Finally, check the answer to see if it is reasonable.

This text is adapted from Openstax, University Physics Volume 1, Section 10.1: Rotational Variables.

Теги

Angular VelocityAngular AccelerationTangential AccelerationRotational KinematicsRadians Per Second SquaredProblem solving StrategyTranslational Analog

Из главы 10:

article

Now Playing

10.2 : Angular Velocity and Acceleration

Rotation and Rigid Bodies

8.6K Просмотры

article

10.1 : Угловая скорость и смещение

Rotation and Rigid Bodies

13.2K Просмотры

article

10.3 : Вращение с постоянным угловым ускорением - I

Rotation and Rigid Bodies

6.5K Просмотры

article

10.4 : Вращение с постоянным угловым ускорением - II

Rotation and Rigid Bodies

5.8K Просмотры

article

10.5 : Связь угловых и линейных величин - I

Rotation and Rigid Bodies

6.4K Просмотры

article

10.6 : Связь угловых и линейных величин - II

Rotation and Rigid Bodies

5.3K Просмотры

article

10.7 : Момент инерции

Rotation and Rigid Bodies

10.5K Просмотры

article

10.8 : Момент инерции и кинетическая энергия вращения

Rotation and Rigid Bodies

7.1K Просмотры

article

10.9 : Момент инерции: расчеты

Rotation and Rigid Bodies

6.6K Просмотры

article

10.10 : Момент инерции составных объектов

Rotation and Rigid Bodies

6.0K Просмотры

article

10.11 : Теорема о параллельной оси

Rotation and Rigid Bodies

6.3K Просмотры

article

10.12 : Теорема о перпендикулярной оси

Rotation and Rigid Bodies

2.5K Просмотры

article

10.13 : Векторное преобразование во вращающихся системах координат

Rotation and Rigid Bodies

1.3K Просмотры

article

10.14 : Сила Кориолиса

Rotation and Rigid Bodies

2.8K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены