Войдите в систему

The motion of a rocket is governed by the conservation of momentum principle. A rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. As time goes by, the rocket's mass (which includes the mass of the remaining fuel) continuously decreases, and its velocity increases. Therefore, the principle of conservation of momentum is used to explain the dynamics of a rocket's motion. The ideal rocket equation gives the change in velocity that a rocket experiences by burning off a certain mass of fuel, which decreases the total rocket mass. This equation was originally derived by the Soviet physicist Konstantin Tsiolkovsky in 1897.

The total change in a rocket's velocity depends on the mass of the fuel that is being burned during the flight, which is not linear. Furthermore, the rocket's acceleration depends on the speed of the exhaust gases. Therefore, the speed of the exhaust gas should be as high as possible to achieve the maximum velocity. Also, for a given speed of the exhaust gas, the maximum speed for the rocket is achieved when the ratio of the initial mass to the final mass of the rocket is as high as possible; that is, the mass of the rocket without fuel should be as low as possible, and it should carry a maximum amount of the fuel. The ideal rocket equation only accounts for the reaction force exerted by the exhaust gases on the rocket. It does not account for any other forces acting on the rocket.

This text is adapted from Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Теги

Rocket PropulsionConservation Of MomentumRocket MotionRocket EquationKonstantin TsiolkovskyExhaust Gas SpeedRocket AccelerationRocket Mass RatioIdeal Rocket Equation

Из главы 9:

article

Now Playing

9.17 : Rocket Propulsion In Empty Space - II

Linear Momentum, Impulse and Collisions

2.9K Просмотры

article

9.1 : Линейный импульс

Linear Momentum, Impulse and Collisions

13.4K Просмотры

article

9.2 : Сила и импульс

Linear Momentum, Impulse and Collisions

13.7K Просмотры

article

9.3 : Импульс

Linear Momentum, Impulse and Collisions

16.7K Просмотры

article

9.4 : Теорема импульс-импульс

Linear Momentum, Impulse and Collisions

10.8K Просмотры

article

9.5 : Сохранение импульса: введение

Linear Momentum, Impulse and Collisions

14.2K Просмотры

article

9.6 : Сохранение импульса: решение проблем

Linear Momentum, Impulse and Collisions

9.5K Просмотры

article

9.7 : Типы столкновений - I

Linear Momentum, Impulse and Collisions

6.3K Просмотры

article

9.8 : Типы столкновений - II

Linear Momentum, Impulse and Collisions

6.6K Просмотры

article

9.9 : Упругие столкновения: введение

Linear Momentum, Impulse and Collisions

10.6K Просмотры

article

9.10 : Упругие столкновения: тематическое исследование

Linear Momentum, Impulse and Collisions

11.6K Просмотры

article

9.11 : Коллизии в нескольких измерениях: введение

Linear Momentum, Impulse and Collisions

4.3K Просмотры

article

9.12 : Многомерные столкновения: решение проблем

Linear Momentum, Impulse and Collisions

3.4K Просмотры

article

9.13 : Центр масс: введение

Linear Momentum, Impulse and Collisions

12.4K Просмотры

article

9.14 : Значение центра масс

Linear Momentum, Impulse and Collisions

6.1K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены