JoVE Logo

Entrar

28.2 : Campos Magnéticos

A moving charge or a current creates a magnetic field in the surrounding space, in addition to its electric field. The magnetic field exerts a force on any other moving charge or current that is present in the field. Like an electric field, the magnetic field is also a vector field. At any position, the direction of the magnetic field is defined as the direction in which the north pole of a compass needle points.

A magnetic field is defined by the force that a charged particle experiences moving in that field. The magnitude of this magnetic force is proportional to the amount of charge, Q, the speed of the charged particle, v, and the magnitude of the applied magnetic field, B. The direction of this force is perpendicular to both the direction of the moving charged particle and the direction of the applied magnetic field. Based on these observations, we define the magnetic field strength based on the magnetic force on a charge, Q, moving at a certain velocity as the cross-product of the velocity and the magnetic field:

Lorentz force equation \( \vec{F} = Q \vec{v} \times \vec{B} \), illustrating electromagnetism principles.

This equation defines the magnetic field with respect to the force on the motion of a charged particle. The magnitude of the force is determined from the definition of the cross-product as it relates to the magnitudes of each of the vectors. In other words, the magnitude of the force satisfies the following equation:

Magnetic force equation, F=QvBsinθ, formula related to motion of charges in magnetic fields.

where θ is the angle between the velocity and the magnetic field.

The SI unit for magnetic field strength is called the tesla (T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943):

Magnetic field strength unit formula, 1 Tesla equals 1 Newton per Ampere meter, physics equation.

A non-SI magnetic field unit in common use is called the gauss (G) and is related to the Tesla through the following conversion:

Magnetic field conversion formula 1G=10^-4T, showing unit equivalence in magnetic studies.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle to a magnetic field. When charges are stationary, their electric fields do not affect magnets. However, when charges move, they produce magnetic fields that exert forces on other magnets. When there is relative motion, a connection between electric and magnetic forces emerges, with each affecting the other.

Tags

Magnetic FieldMoving ChargeElectric FieldVector FieldMagnetic ForceCharge QVelocity vMagnetic Field StrengthTesla TGauss GCross productCharged ParticleElectromagnetic Interaction

Do Capítulo 28:

article

Now Playing

28.2 : Campos Magnéticos

Forças e Campos Magnéticos

5.9K Visualizações

article

28.1 : Magnetismo

Forças e Campos Magnéticos

6.2K Visualizações

article

28.3 : Linhas do Campo Magnético

Forças e Campos Magnéticos

4.0K Visualizações

article

28.4 : Fluxo Magnético

Forças e Campos Magnéticos

3.5K Visualizações

article

28.5 : Movimento De Uma Partícula Carregada em um Campo Magnético

Forças e Campos Magnéticos

4.5K Visualizações

article

28.6 : Força Magnética

Forças e Campos Magnéticos

891 Visualizações

article

28.7 : Força Magnética em um Condutor Transportador de Corrente

Forças e Campos Magnéticos

4.0K Visualizações

article

28.8 : Força Magnética em Fios Condutores de Corrente: Exemplo

Forças e Campos Magnéticos

1.4K Visualizações

article

28.9 : Força em uma Espira de Corrente em um Campo Magnético

Forças e Campos Magnéticos

3.2K Visualizações

article

28.10 : Torque em uma Espira de Corrente em um Campo Magnético

Forças e Campos Magnéticos

3.8K Visualizações

article

28.11 : Efeito Hall

Forças e Campos Magnéticos

2.2K Visualizações

article

28.12 : Experimento e/m de Thomson

Forças e Campos Magnéticos

3.2K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados