JoVE Logo

Entrar

When a lump of clay is dropped into water, it sinks. But if the same lump of clay is molded into the shape of a boat, it starts to float. Because of its shape, the clay boat displaces more water than the lump and experiences a greater buoyant force, even though its mass is the same. The same holds true for steel ships. The average density of an object majorly determines if the object will float. If an object's average density is less than that of the surrounding fluid, it will float. The reason is that the fluid, having a higher density, contains more mass and hence more weight in the same volume. The buoyant force, which equals the weight of the fluid displaced, is thus greater than the weight of the object. Likewise, an object denser than the fluid will sink.

The extent to which a floating object is submerged depends on how the object's density compares to the density of the fluid. For example, an unloaded ship has a lower density, and thus a small portion of it is submerged compared with the same ship when it is loaded. The fraction submerged is the ratio of the volume submerged to the object's volume. In other words, the volume submerged equals the volume of fluid displaced. The fraction submerged is also equal to the ratio of the object's density to the density of the fluid. This expression gives insightful information about the type of fluid needed to make an object float or sink. For example, numerous lower-density objects or substances float in higher-density fluids: oil on water, a hot-air balloon in the atmosphere, a bit of cork in wine, an iceberg in saltwater, and hot wax in a "lava lamp," to name a few. A less obvious example is mountain ranges floating on the higher-density crust and mantle beneath them. Even seemingly solid Earth has fluid characteristics.

This text is adapted from Openstax, University Physics Volume 1, Section 14.4: Archimedes' Principle and Buoyancy.

Tags

DensityArchimedes PrincipleBuoyant ForceFluid DisplacementFloating ObjectsSubmerged VolumeObject DensityFluid DensityMass ComparisonHigher density FluidsLower density ObjectsBuoyancy EffectsSolid Earth Characteristics

Do Capítulo 13:

article

Now Playing

13.10 : Densidade e Princípio de Arquimedes

Mecânica dos Fluidos

6.4K Visualizações

article

13.1 : Características dos Fluidos

Mecânica dos Fluidos

3.5K Visualizações

article

13.2 : Densidade

Mecânica dos Fluidos

13.7K Visualizações

article

13.3 : Pressão dos Fluidos

Mecânica dos Fluidos

14.3K Visualizações

article

13.4 : Variação da pressão atmosférica

Mecânica dos Fluidos

1.9K Visualizações

article

13.5 : Lei de Pascal

Mecânica dos Fluidos

7.9K Visualizações

article

13.6 : Aplicação da Lei de Pascal

Mecânica dos Fluidos

7.8K Visualizações

article

13.7 : Manômetro

Mecânica dos Fluidos

2.9K Visualizações

article

13.8 : Empuxo

Mecânica dos Fluidos

8.2K Visualizações

article

13.9 : Princípio de Arquimedes

Mecânica dos Fluidos

7.6K Visualizações

article

13.11 : Fluidos em aceleração

Mecânica dos Fluidos

972 Visualizações

article

13.12 : Tensão Superficial e Energia Superficial

Mecânica dos Fluidos

1.3K Visualizações

article

13.13 : Excesso de pressão dentro de uma gota e uma bolha

Mecânica dos Fluidos

1.5K Visualizações

article

13.14 : Ângulo de contato

Mecânica dos Fluidos

11.5K Visualizações

article

13.15 : Subida de Líquido em um Tubo Capilar

Mecânica dos Fluidos

1.2K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados