JoVE Logo

Zaloguj się

Neurons communicate at synapses, or junctions, to excite or inhibit the activity of other neurons or target cells, such as muscles. Synapses may be chemical or electrical.

Most synapses are chemical. That means that an electrical impulse—or action potential—spurs the release of chemical messengers. These chemical messengers are also called neurotransmitters. The neuron sending the signal is called the presynaptic neuron. The neuron receiving the signal is the postsynaptic neuron.

The presynaptic neuron fires an action potential that travels through its axon. The end of the axon, or axon terminal, contains neurotransmitter-filled vesicles. The action potential opens voltage-gated calcium ion channels in the axon terminal membrane. Ca2+ rapidly enters the presynaptic cell (due to the higher external Ca2+ concentration), enabling the vesicles to fuse with the terminal membrane and release neurotransmitters.

The space between presynaptic and postsynaptic cells is called the synaptic cleft. Neurotransmitters released from the presynaptic cell rapidly populate the synaptic cleft and bind to receptors on the postsynaptic neuron. The binding of neurotransmitters instigates chemical changes in the postsynaptic neuron, such as opening or closing ion channels. This, in turn, alters the membrane potential of the postsynaptic cell, making it more or less likely to fire an action potential.

To end signaling, neurotransmitters in the synapse are degraded by enzymes, reabsorbed by the presynaptic cell, diffused away, or cleared by glial cells.

Electrical synapses are present in the nervous system of both invertebrates and vertebrates. They are narrower than their chemical counterparts and transfer ions directly between neurons, allowing faster transmission of the signal. However, unlike chemical synapses, electrical synapses cannot amplify or transform presynaptic signals. Electrical synapses syncronize neuron activity, which is favorable for controlling rapid, invariable signals such as the danger escape in squids.

Neurons can send signals to, and receive them from, many other neurons. The integration of numerous inputs received by postsynaptic cells ultimately determines their action potential firing patterns.

Tagi

Synaptic SignalingNeuronsChemical SignalingSynapsesAxon TerminalPresynaptic CellPostsynaptic CellNeurotransmitter MoleculesSynaptic VesiclesElectrical SignalAction PotentialCell MembraneSynaptic CleftNeurotransmitter ReceptorsResponseNeuron CommunicationJunctionsExcite Or Inhibit ActivityTarget CellsMusclesChemical SynapsesElectrical SynapsesElectrical ImpulseChemical MessengersPresynaptic NeuronPostsynaptic Neuron

Z rozdziału 6:

article

Now Playing

6.7 : Synaptic Signaling

Cell Signaling

74.6K Wyświetleń

article

6.1 : Co to jest sygnalizacja komórkowa?

Cell Signaling

108.4K Wyświetleń

article

6.2 : Sygnalizacja bakteryjna

Cell Signaling

30.7K Wyświetleń

article

6.3 : Sygnalizacja drożdży

Cell Signaling

14.3K Wyświetleń

article

6.4 : Sygnalizacja zależna od kontaktu

Cell Signaling

44.1K Wyświetleń

article

6.5 : Sygnalizacja autokrynna

Cell Signaling

47.5K Wyświetleń

article

6.6 : Sygnalizacja parakrynna

Cell Signaling

54.5K Wyświetleń

article

6.8 : Receptory sprzężone z białkiem G

Cell Signaling

112.5K Wyświetleń

article

6.9 : Receptory wewnętrzne

Cell Signaling

68.5K Wyświetleń

article

6.10 : Sygnalizacja hormonalna

Cell Signaling

63.8K Wyświetleń

article

6.11 : Kim są Drugi Posłańcy?

Cell Signaling

81.4K Wyświetleń

article

6.12 : Wewnątrzkomórkowe kaskady sygnalizacyjne

Cell Signaling

46.0K Wyświetleń

article

6.13 : Kanały jonowe

Cell Signaling

85.3K Wyświetleń

article

6.14 : Receptory sprzężone z enzymami

Cell Signaling

76.1K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone