JoVE Logo

로그인

3.12 : Stability of Substituted Cyclohexanes

This lesson discusses the stability of substituted cyclohexanes with a focus on energies of various conformers and the effect of 1,3-diaxial interactions.

The two chair conformations of cyclohexanes undergo rapid interconversion at room temperature. Both forms have identical energies and stabilities, each comprising equal amounts of the equilibrium mixture. Replacing a hydrogen atom with a functional group makes the two conformations energetically non-equivalent.

For example, in methylcyclohexane, the CH3 group occupies an axial position in one chair conformation and an equatorial position in another. This leads to an increase in energy of the axial conformation to approximately 7.6 kJ mol−1, making the equatorial conformation more stable with an abundance of 95%.

The reason for such variations in energy and stability is that the methyl hydrogens experience repulsive dispersion interactions with the two parallel and closely positioned axial hydrogens on the same side of the ring. Since the steric strain originates between groups on C1 and C3 or C5, it is called a 1,3-diaxial interaction. These interactions, when shown with the Newman projection, exhibit a gauche relationship. However, if the methyl group is positioned equatorially, it is placed anti to C3 and C5, minimizing the steric repulsion.

As the size of a functional group increases, 1,3-diaxial interactions become more pronounced, increasing the energy difference between the two conformations.

Tags

Substituted CyclohexanesStabilityEnergiesConformers13 diaxial InteractionsChair ConformationsEquilibrium MixtureFunctional GroupMethylcyclohexaneAxial PositionEquatorial PositionEnergy IncreaseStability IncreaseAbundanceRepulsive Dispersion InteractionsSteric Strain13 diaxial InteractionNewman ProjectionGauche RelationshipSteric Repulsion

장에서 3:

article

Now Playing

3.12 : Stability of Substituted Cyclohexanes

알케인과 사이클로알케인

12.2K Views

article

3.1 : 알카네의 구조

알케인과 사이클로알케인

26.6K Views

article

3.2 : 알카네의 헌법 이소머스

알케인과 사이클로알케인

17.5K Views

article

3.3 : 알카인의 명칭

알케인과 사이클로알케인

21.0K Views

article

3.4 : 알케인의 물리적 특성

알케인과 사이클로알케인

10.6K Views

article

3.5 : 뉴먼 프로젝션

알케인과 사이클로알케인

16.2K Views

article

3.6 : 에탄과 프로판의 적합성

알케인과 사이클로알케인

13.6K Views

article

3.7 : 부탄의 적합성

알케인과 사이클로알케인

13.7K Views

article

3.8 : 사이클로알카네인

알케인과 사이클로알케인

11.9K Views

article

3.9 : 사이클로알카네인의 적합성

알케인과 사이클로알케인

11.4K Views

article

3.10 : 사이클로헥산의 적합성

알케인과 사이클로알케인

12.0K Views

article

3.11 : 사이클로헥산의 의자 형태

알케인과 사이클로알케인

14.1K Views

article

3.13 : 디대체 사이클로헥산: 시스 트랜스 이소머리즘

알케인과 사이클로알케인

11.7K Views

article

3.14 : 연소 에너지: 알카네와 사이클로알카인의 안정성 측정

알케인과 사이클로알케인

6.2K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유