JoVE Logo

サインイン

2.13 : Position Vectors

A position vector is a fundamental concept in mathematics that helps determine the position of one point with respect to another point in space. It is a vector that describes the direction and distance between two points. Position vectors are highly useful in the field of math and science, as they help represent spatial relationships and make calculations easier.

For instance, we want to locate a point P(x, y, z) relative to the origin of coordinates O. In that case, we can define a position vector r, which extends from the origin O to point P. We can express this vector in Cartesian vector form as: r = xi + yj + zk, where i, j, and k are the unit vectors in the x, y, and z directions, respectively. The position vector r gives us the direction and magnitude of the vector from point O to point P.

Consider a position vector directed from point A to point B in space. This vector can be denoted by the symbol r. We can also refer to this vector with two subscripts to indicate the points from and to which it is directed. Thus, we can also designate r as rAB. Please note that if the position vectors extend from the origin of coordinates, then they are referred to only with one subscript, as rA and rB. The position vector rAB can be obtained from rA and rB using the expression rAB = rB - rA= (xB - xA)i + (yB - yA)j + (zB - zA)k.

For example, to establish a position vector from point A to B, the coordinates of the tail A(1 m, m0, -3 m) are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), which yields rAB={ -3i + 2j + 6k} m.

タグ

Position VectorMathematicsSpatial RelationshipsCartesian Vector FormUnit VectorsCoordinatesMagnitudeDirectionVector NotationRABVector CalculationPoint APoint B

章から 2:

article

Now Playing

2.13 : Position Vectors

力のベクトル

735 閲覧数

article

2.1 : スカラーとベクトル

力のベクトル

1.1K 閲覧数

article

2.2 : ベクトル演算

力のベクトル

1.1K 閲覧数

article

2.3 : 力の紹介

力のベクトル

443 閲覧数

article

2.4 : 力の分類

力のベクトル

1.1K 閲覧数

article

2.5 : 力のベクトル加算

力のベクトル

703 閲覧数

article

2.6 : 2次元力システム

力のベクトル

849 閲覧数

article

2.7 : 2次元力システム:問題解決

力のベクトル

520 閲覧数

article

2.8 : スカラー表記

力のベクトル

631 閲覧数

article

2.9 : デカルトベクトル表記

力のベクトル

701 閲覧数

article

2.10 : ベクトルの方向余弦

力のベクトル

432 閲覧数

article

2.11 : 3次元力システム

力のベクトル

1.9K 閲覧数

article

2.12 : 3次元力システム:問題解決

力のベクトル

599 閲覧数

article

2.14 : 線に沿ってベクトルを強制する

力のベクトル

443 閲覧数

article

2.15 : ドット積

力のベクトル

265 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved