JoVE Logo

サインイン

The magnetic field due to a volume current distribution given by the Biot–Savart Law can be expressed as follows:

Equation1

To evaluate the divergence of the magnetic field, the divergence is applied to both sides of the Biot–Savart equation:

Equation2

Applying the vector product rule, the term within the integral is simplified to the following equation:

Equation3

The first term involving the curl of the current density function is zero since the current density is independent of the field coordinates. Using vector analysis, the second term in the above equation also reduces to zero. Hence, the divergence of a magnetic field is zero:

Equation4

The zero divergence of the magnetic field is valid for any field, irrespective of whether the field is static or time-dependent. This equation states that the magnetic flux that passes through an arbitrary closed surface is zero. This is possible only if the number of magnetic field lines that enter the closed surface equals the number of field lines that exit through this closed surface. Thus, magnetic field lines always form closed loops. It also implies that magnetic monopoles do not exist.

To evaluate the curl of the magnetic field, the curl is applied to both sides of the Biot–Savart equation:

Equation5

Again, by applying vector analysis, the equation is simplified:

Equation6

The curl of the magnetic field equals the vacuum permeability multiplied by the current density. The same result is obtained by applying Stoke's theorem to the integral form of Ampere's Law:

Equation7

Since the above relation holds for any closed loop, the integrands are equal. This equation is called the differential form of Ampere's Law.

タグ

DivergenceCurlMagnetic FieldBiot Savart LawCurrent DensityVector AnalysisMagnetic FluxClosed SurfaceMagnetic Field LinesMagnetic MonopolesVacuum PermeabilityAmpere s LawStoke s Theorem

章から 29:

article

Now Playing

29.8 : Divergence and Curl of Magnetic Field

磁場の発生源

2.7K 閲覧数

article

29.1 : 移動電荷による磁場

磁場の発生源

8.2K 閲覧数

article

29.2 : ビオ・サバール法

磁場の発生源

5.6K 閲覧数

article

29.3 : ビオ・サバールの法則:問題解決

磁場の発生源

2.4K 閲覧数

article

29.4 : 細い直線ワイヤーによる磁場

磁場の発生源

4.6K 閲覧数

article

29.5 : 2本の直線ワイヤによる磁場

磁場の発生源

2.3K 閲覧数

article

29.6 : 2つの並列電流間の磁力

磁場の発生源

3.4K 閲覧数

article

29.7 : 電流ループの磁場

磁場の発生源

4.2K 閲覧数

article

29.9 : アンペアの法則

磁場の発生源

3.6K 閲覧数

article

29.10 : アンペアの法則:問題解決

磁場の発生源

3.5K 閲覧数

article

29.11 : ソレノイド

磁場の発生源

2.4K 閲覧数

article

29.12 : ソレノイドの磁場

磁場の発生源

3.6K 閲覧数

article

29.13 : トロイド

磁場の発生源

2.8K 閲覧数

article

29.14 : 磁気ベクトルポテンシャル

磁場の発生源

488 閲覧数

article

29.15 : 磁化された物体による電位

磁場の発生源

243 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved