JoVE Logo

サインイン

26.11 : Boundary Conditions for Current Density

Current density becomes discontinuous across an interface of materials with different electrical conductivities. The normal component of the current density is continuous across the boundary.

Equation1

However, the tangential components of the current density are discontinuous across the interface.

Equation2

Consider an interface separated by two conducting media with conductivities σ1 and σ2. The steady current density at the interface is , in medium 1 at a point P1. It makes an angle α1 with the normal. The current density at point P2 in medium 2 makes an angle α2 with the normal.

Figure1

The normal and tangential components of the current density give the equations as follows:

Equation3

Equation4

Taking the ratio of the two equations, the expression for the electrical conductivities in both the media is obtained.

Equation5

If the electrical conductivity of medium 1 is greater than that of medium 2, the angle α2 approaches zero. This implies that the current density is normal to the surface of conductor 1.

タグ

Current DensityBoundary ConditionsElectrical ConductivityInterfaceNormal ComponentTangential ComponentConducting MediaSteady Current DensityAngle With NormalElectrical ConductivitiesMedium 1Medium 2

章から 26:

article

Now Playing

26.11 : Boundary Conditions for Current Density

電流と抵抗

778 閲覧数

article

26.1 : 電流

電流と抵抗

5.6K 閲覧数

article

26.2 : ドリフト速度

電流と抵抗

4.0K 閲覧数

article

26.3 : 電流密度

電流と抵抗

3.8K 閲覧数

article

26.4 : 比 抵抗

電流と抵抗

3.3K 閲覧数

article

26.5 : 抵抗

電流と抵抗

4.3K 閲覧数

article

26.6 : オームの法則

電流と抵抗

5.4K 閲覧数

article

26.7 : 非オーミックデバイス

電流と抵抗

1.0K 閲覧数

article

26.8 : 電力

電流と抵抗

3.0K 閲覧数

article

26.9 : 電気エネルギー

電流と抵抗

1.2K 閲覧数

article

26.10 : 連続方程式

電流と抵抗

781 閲覧数

article

26.12 : 電気伝導率

電流と抵抗

1.1K 閲覧数

article

26.13 : 金属伝導の理論

電流と抵抗

1.3K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved