JoVE Logo

サインイン

20.17 : Thermodynamic Potentials

Thermodynamic potentials are state functions that are extremely useful in analyzing a thermodynamic system. They have dimensions of energy. The four important thermodynamic potentials are internal energy, enthalpy, Helmholtz free energy, and Gibbs free energy. These thermodynamic potentials can be expressed using two of the following variables: pressure, volume, temperature, and entropy. These two variables are expressed as the rate of change of the thermodynamic potential with respect to other two variables.

Internal energy is based on the contributions of molecules' potential and kinetic energy within a system. It is a function of entropy and volume. Therefore, the other two variables, i.e., temperature and pressure, can be expressed as the partial differential of internal energy at constant volume and entropy, respectively.

Enthalpy refers to the heat content of a system and is a function of entropy and pressure. If entropy and pressure are constant, the change in enthalpy is equal to the heat transferred to the system. For the reversible isobaric process, enthalpy represents the heat absorbed by the system. Expressions of temperature and volume can be obtained from the partial derivative of enthalpy with respect to entropy and pressure, respectively.

Helmholtz free energy measures the "useful" work obtained from a closed thermodynamic system at a constant temperature and volume. The system does work on its surroundings until its Helmholtz free energy reaches a minimum. Entropy and pressure can be expressed as the partial derivative of Helmholtz free energy with respect to temperature and pressure, respectively.

Gibbs free energy is used in problems where pressure and temperature are the important variables. It measures the maximum work done in a thermodynamic system when the temperature and pressure are constant. The expressions of entropy and volume can be obtained through partial differentiation of Gibbs free energy with respect to temperature and pressure, respectively.

タグ

Thermodynamic PotentialsInternal EnergyEnthalpyHelmholtz Free EnergyGibbs Free EnergyState FunctionsEnergy DimensionsEntropyVolumeTemperaturePressureClosed SystemUseful WorkReversible Isobaric ProcessPartial Derivatives

章から 20:

article

Now Playing

20.17 : Thermodynamic Potentials

熱力学の第一法則

749 閲覧数

article

20.1 : 熱力学系

熱力学の第一法則

4.9K 閲覧数

article

20.2 : ボリューム変更中に行われる作業

熱力学の第一法則

3.8K 閲覧数

article

20.3 : 熱力学状態間のパス

熱力学の第一法則

3.0K 閲覧数

article

20.4 : 熱と自由膨張

熱力学の第一法則

1.7K 閲覧数

article

20.5 : 内部エネルギー

熱力学の第一法則

4.4K 閲覧数

article

20.6 : 熱力学の第一法則

熱力学の第一法則

4.0K 閲覧数

article

20.7 : 熱力学の第一法則:問題解決

熱力学の第一法則

2.4K 閲覧数

article

20.8 : サイクリックプロセスと孤立したシステム

熱力学の第一法則

2.7K 閲覧数

article

20.9 : 等温プロセス

熱力学の第一法則

3.5K 閲覧数

article

20.10 : アイソコリックプロセスとアイソバリックプロセス

熱力学の第一法則

3.3K 閲覧数

article

20.11 : 理想気体の熱容量I

熱力学の第一法則

2.5K 閲覧数

article

20.12 : 理想気体の熱容量II

熱力学の第一法則

2.3K 閲覧数

article

20.13 : 理想気体の熱容量III

熱力学の第一法則

2.1K 閲覧数

article

20.14 : 理想気体の断熱過程

熱力学の第一法則

3.0K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved