サインイン

The outcome of any hypothesis testing leads to rejecting or not rejecting the null hypothesis. This decision is taken based on the analysis of the data, an appropriate test statistic, an appropriate confidence level, the critical values, and P-values. However, when the evidence suggests that the null hypothesis cannot be rejected, is it right to say, 'Accept' the null hypothesis?

There are two ways to indicate that the null hypothesis is not rejected. 'Accept' the null hypothesis and 'fail to reject' the null hypothesis. Superficially, both these phrases mean the same, but in statistics, the meanings are somewhat different. The phrase 'accept the null hypothesis' implies that the null hypothesis is by nature true, and it is proved. But a hypothesis test simply provides information that there is no sufficient evidence in support of the alternative hypothesis, and therefore the null hypothesis cannot be rejected. The null hypothesis cannot be proven, although the hypothesis test begins with an assumption that the hypothesis is true, and the final result indicates the failure of the rejection of the null hypothesis. Thus, it is always advisable to state 'fail to reject the null hypothesis' instead of 'accept the null hypothesis.'

'Accepting' a hypothesis may also imply that the given hypothesis is now proven, so there is no need to study it further. Nevertheless, that is never the case, as newer scientific evidence often challenges the existing studies. Discovery of viruses and fossils, rediscovery of presumed extinct species, criminal trials, and novel drug tests follow the same principles of testing hypotheses. In those cases, 'accepting' a hypothesis may lead to severe consequences.

タグ

Hypothesis TestingNull HypothesisRejectFail To RejectConfidence LevelP valuesTest StatisticStatistical AnalysisEvidenceAlternative HypothesisAcceptanceImplicationsScientific EvidenceStatistical Principles

章から 9:

article

Now Playing

9.8 : Hypothesis: Accept or Fail to Reject?

仮説検証

27.1K 閲覧数

article

9.1 : 仮説とは?

仮説検証

9.3K 閲覧数

article

9.2 : 帰無仮説と対立仮説

仮説検証

7.6K 閲覧数

article

9.3 : 臨界領域、棄却限界値、有意水準

仮説検証

11.4K 閲覧数

article

9.4 : P値

仮説検証

6.4K 閲覧数

article

9.5 : 仮説検定の種類

仮説検証

25.2K 閲覧数

article

9.6 : 意思決定:p値法

仮説検証

5.1K 閲覧数

article

9.7 : 意思決定:従来の方法

仮説検証

3.8K 閲覧数

article

9.9 : 仮説検定のエラー

仮説検証

3.9K 閲覧数

article

9.10 : 人口比率に関する主張の検定

仮説検証

3.2K 閲覧数

article

9.11 : 平均に関するクレームのテスト: 既知の母集団 SD

仮説検証

2.6K 閲覧数

article

9.12 : 平均値に関するクレームのテスト: 母集団 SD 不明

仮説検証

3.3K 閲覧数

article

9.13 : 標準偏差に関する主張の検定

仮説検証

2.4K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved