サインイン

Multiple comparison test, abbreviated as MCT, is a post hoc analysis generally performed after comparing multiple samples with one or more tests. An MCT will help identify a significantly different sample among multiple samples or a factor among multiple factors.

It would be easy to compare two samples using a significance alpha level of 0.05. In other words, there is only one sample pair to be compared. However, it would be difficult to identify a significantly different sample if the number of samples increases. This is because the number of sample pairs to be compared or pairwise comparisons increases with the number of samples. Further, the percentage of Type-I error increases with the number of pairwise comparisons.

An MCT will help identify the significantly different mean among multiple samples by correcting the significance alpha values and reducing the Type-I error. Additionally, one can use different MCTs for datasets with equal or unequal sample sizes. An example of a commonly used MCT is the Bonferroni test.

タグ

Multiple Comparison TestsMCTPost Hoc AnalysisSignificant DifferenceSample ComparisonSignificance Alpha LevelType I ErrorPairwise ComparisonsBonferroni TestMean IdentificationEqual Sample SizesUnequal Sample Sizes

章から 10:

article

Now Playing

10.5 : Multiple Comparison Tests

分散分析

3.7K 閲覧数

article

10.1 : ANOVAとは?

分散分析

6.9K 閲覧数

article

10.2 : 一元配置分散分析

分散分析

7.0K 閲覧数

article

10.3 : 一元配置分散分析: サンプルサイズが等しい

分散分析

3.1K 閲覧数

article

10.4 : 一元配置分散分析: サンプルサイズが等しくない

分散分析

5.6K 閲覧数

article

10.6 : ボンフェローニテスト

分散分析

2.5K 閲覧数

article

10.7 : 二元配置分散分析

分散分析

2.5K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved