JoVE Logo

サインイン

The expected value is known as the "long-term" average or mean. This means that over the long term of experimenting over and over, you would expect this average. The expected average is represented by the symbol μ. It is calculated as follows:

Equation1

In the equation, x is an event, and P(x) is the probability of the event occurring.

The expected value has practical applications in decision theory.

This text is adapted from Openstax, Introductory Statistics, Section 4.2 Mean or Expected Value and Standard Deviation.

タグ

Expected ValueLong term AverageMeanProbabilityDecision TheoryOpenstaxIntroductory StatisticsEventP xStandard Deviation

章から 6:

article

Now Playing

6.6 : Expected Value

確率分布

3.8K 閲覧数

article

6.1 : 統計学における確率

確率分布

12.2K 閲覧数

article

6.2 : 確率変数

確率分布

11.2K 閲覧数

article

6.3 : 確率分布

確率分布

6.5K 閲覧数

article

6.4 : 確率ヒストグラム

確率分布

11.0K 閲覧数

article

6.5 : 異常な結果

確率分布

3.1K 閲覧数

article

6.7 : 二項確率分布

確率分布

10.1K 閲覧数

article

6.8 : ポアソン確率分布

確率分布

7.7K 閲覧数

article

6.9 : 均一な配布

確率分布

4.7K 閲覧数

article

6.10 : 正規分布

確率分布

10.5K 閲覧数

article

6.11 : z スコアと曲線下面積

確率分布

10.3K 閲覧数

article

6.12 : 正規分布の応用

確率分布

4.9K 閲覧数

article

6.13 : サンプリング分布

確率分布

11.7K 閲覧数

article

6.14 : 中心極限定理

確率分布

13.8K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved