JoVE Logo

Accedi

Consider a system comprising several point masses. The coordinates of the center of mass for this system can be expressed as the summation of the product of each mass and its position vector divided by the total mass:

Equation1

Suppose the point masses are replaced with an extended object with uniformly distributed mass. The coordinates of the center of mass for this object can be obtained by replacing the point mass with the differential mass element and the summation with an integral in the equation for the center of mass:

Equation2

Consider a ring with uniform mass distribution M and radius R. The circular symmetry ensures that the center of mass is located at the ring's geometric center:

Equation1

Consider a coordinate system with its origin located at the center of the ring. Since the ring has a uniform mass distribution, the linear mass density is constant. So, the differential mass element on the surface of the ring is the product of the linear mass density and the differential length element on the ring's surface.

Now, using the expression for the center of mass and substituting the value of the position vector in the component form and the differential mass element gives the following equation:

Equation3

As the arc length ds subtends a differential angle , the arc length equals the radius multiplied by the differential angle. The linear mass density is the total mass divided by the length of the ring. Incorporating these values of arc length and linear mass density, the center of mass expression reduces to the following:

Equation4

The variable of integration is the angle θ. So, the limits of integration around the ring are θ = 0 to θ = 2π. The integral is separated into the x and y components and integrated across the limits:

Equation5

Since the origin of the coordinate is located at the center of the ring, the center of mass of the ring lies at its geometric center.

Tags

Gravitational Potential EnergyCenter Of MassExtended ObjectsPoint MassesUniform Mass DistributionRing Mass DistributionLinear Mass DensityDifferential Mass ElementArc LengthIntegration LimitsGeometric CenterCircular SymmetryCoordinate System

Dal capitolo 9:

article

Now Playing

9.15 : Gravitational Potential Energy for Extended Objects

Linear Momentum, Impulse and Collisions

1.3K Visualizzazioni

article

9.1 : Momento lineare

Linear Momentum, Impulse and Collisions

13.6K Visualizzazioni

article

9.2 : Forza e slancio

Linear Momentum, Impulse and Collisions

14.7K Visualizzazioni

article

9.3 : Impulso

Linear Momentum, Impulse and Collisions

17.8K Visualizzazioni

article

9.4 : Teorema dell'impulso-momento

Linear Momentum, Impulse and Collisions

10.9K Visualizzazioni

article

9.5 : Conservazione della quantità di moto: Introduzione

Linear Momentum, Impulse and Collisions

14.3K Visualizzazioni

article

9.6 : Conservazione della quantità di moto: risoluzione dei problemi

Linear Momentum, Impulse and Collisions

9.7K Visualizzazioni

article

9.7 : Tipi di collisioni - I

Linear Momentum, Impulse and Collisions

6.5K Visualizzazioni

article

9.8 : Tipi di collisione - II

Linear Momentum, Impulse and Collisions

6.8K Visualizzazioni

article

9.9 : Collisioni elastiche: Introduzione

Linear Momentum, Impulse and Collisions

11.6K Visualizzazioni

article

9.10 : Collisioni elastiche: caso di studio

Linear Momentum, Impulse and Collisions

12.6K Visualizzazioni

article

9.11 : Collisioni in più dimensioni: introduzione

Linear Momentum, Impulse and Collisions

4.4K Visualizzazioni

article

9.12 : Collisioni in più dimensioni: risoluzione dei problemi

Linear Momentum, Impulse and Collisions

3.5K Visualizzazioni

article

9.13 : Centro di Massa: Introduzione

Linear Momentum, Impulse and Collisions

13.4K Visualizzazioni

article

9.14 : Significato del centro di massa

Linear Momentum, Impulse and Collisions

6.1K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati