JoVE Logo

Accedi

29.15 : Potential Due to a Magnetized Object

Magnetic dipoles in magnetic materials are aligned when placed under an external magnetic field. For paramagnets and ferromagnets, dipole alignment occurs in the direction of the magnetic field. However, the dipoles align opposite to the field in the case of diamagnets. This state of magnetic polarization due to the external field is called magnetization. Magnetization is defined as the dipole moment per unit volume. It plays a similar role to polarization in electrostatics.

The vector potential due to a single magnetic dipole at a field point is given by,

Equation1

The vector potential can be rewritten in terms of magnetization for a magnetized material with aligned dipole moments.

Equation2

The equation becomes simplified using vector analysis.

Equation3

The first term in the above expression is the potential due to the volume current, while the second term is the potential due to the surface current.

Now, the volume current is defined as the curl of the magnetization vector. The surface current is defined as the cross product of the magnetization vector and the unit vector along the area vector. By substituting the expressions for the volume and surface currents, the potential expression reduces to,

Equation4

This expression bears an analogy with an electrostatic case, where the field of a polarized object constitutes the field due to bound volume and surface charges.

If the applied magnetic field is uniform, the volume currents become zero, and only the surface current at the boundary of the material exists. When the field applied is non-uniform, the volume currents persist.

Like any steady current, the bound volume current obeys the conservation law. The bound volume current divergence is zero since the divergence of a curl is zero.

Tags

Magnetic DipolesMagnetic MaterialsExternal Magnetic FieldParamagnetsFerromagnetsDiamagnetsMagnetizationDipole MomentPolarizationVector PotentialVolume CurrentSurface CurrentMagnetization VectorCurl Of MagnetizationElectrostatics AnalogyBound CurrentsConservation LawDivergence Of A Curl

Dal capitolo 29:

article

Now Playing

29.15 : Potential Due to a Magnetized Object

Sources of Magnetic Fields

248 Visualizzazioni

article

29.1 : Campo magnetico dovuto a cariche in movimento

Sources of Magnetic Fields

8.2K Visualizzazioni

article

29.2 : Legge di Biot-Savart

Sources of Magnetic Fields

5.7K Visualizzazioni

article

29.3 : Legge di Biot-Savart: risoluzione dei problemi

Sources of Magnetic Fields

2.4K Visualizzazioni

article

29.4 : Campo magnetico dovuto a un sottile filo dritto

Sources of Magnetic Fields

4.7K Visualizzazioni

article

29.5 : Campo magnetico dovuto a due fili dritti

Sources of Magnetic Fields

2.3K Visualizzazioni

article

29.6 : Forza magnetica tra due correnti parallele

Sources of Magnetic Fields

3.4K Visualizzazioni

article

29.7 : Campo magnetico di un circuito di corrente

Sources of Magnetic Fields

4.3K Visualizzazioni

article

29.8 : Divergenza e arricciatura del campo magnetico

Sources of Magnetic Fields

2.7K Visualizzazioni

article

29.9 : Legge di Ampere

Sources of Magnetic Fields

3.6K Visualizzazioni

article

29.10 : Legge di Ampere: risoluzione dei problemi

Sources of Magnetic Fields

3.5K Visualizzazioni

article

29.11 : Solenoidi

Sources of Magnetic Fields

2.4K Visualizzazioni

article

29.12 : Campo magnetico di un solenoide

Sources of Magnetic Fields

3.7K Visualizzazioni

article

29.13 : Toroidi

Sources of Magnetic Fields

2.8K Visualizzazioni

article

29.14 : Potenziale vettoriale magnetico

Sources of Magnetic Fields

512 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati