JoVE Logo

Accedi

24.13 : Energy Associated With a Charge Distribution

The work done to bring a charge through a distance r is given by the potential difference between the initial and the final position. To assemble a collection of point charges, the total work done can be expressed in terms of the product of each pair of charges divided by their separation distance, defined with respect to a suitable origin. Solving this expression gives the energy stored in a point charge distribution.

Hydrogen bonding in water molecules, diagram showing H2O interaction via dashed lines, chemistry.

Consider an infinitesimal charge element in a configuration of continuous charge distribution enclosed in a definite volume. The product of the volume charge density and the volume of the element gives the total charge in this element. The energy stored in this configuration of continuous charge distribution is given by integrating volume charge density and the corresponding potential.   

Applying Gauss's law in its differential form, the volume charge density can be written in terms of the electric field. Using the product rule in this expression gives the divergence of the electric field. The volume integral can be written as a surface integral using Gauss's divergence theorem. Rewriting the potential in terms of the electric field gives the energy stored in this configuration.

DNA replication diagram showing polymerase chain reaction steps; PCR process illustration.

Recall that to obtain the expression for work done, the integration must be performed over the region where the charge is located. Even if the integration is performed over a larger volume, the work done remains conserved as the charge density in the extra volume is zero.

The surface integral of an electric field, which relates to electric potential energy, depends on factors beyond distance, such as charge distribution and system geometry. To calculate total energy, integration over all space, considering the entire volume, is necessary, as the electric field alone at the surface does not provide the complete picture.

Molecular orbitals of dihydrogen ion diagram, illustrating bonding and antibonding interactions.

Tags

EnergyCharge DistributionPotential DifferenceWork DonePoint ChargesVolume Charge DensityElectric FieldGauss s LawDivergence TheoremElectric Potential EnergyIntegrationSurface IntegralTotal Energy

Dal capitolo 24:

article

Now Playing

24.13 : Energy Associated With a Charge Distribution

Electric Potential

1.5K Visualizzazioni

article

24.1 : Energia potenziale elettrica

Electric Potential

5.7K Visualizzazioni

article

24.2 : Energia potenziale elettrica in un campo elettrico uniforme

Electric Potential

4.5K Visualizzazioni

article

24.3 : Energia potenziale elettrica delle cariche a due punti

Electric Potential

4.4K Visualizzazioni

article

24.4 : Potenziale elettrico e differenza di potenziale

Electric Potential

4.3K Visualizzazioni

article

24.5 : Trovare il potenziale elettrico dal campo elettrico

Electric Potential

4.0K Visualizzazioni

article

24.6 : Calcoli del potenziale elettrico I

Electric Potential

1.9K Visualizzazioni

article

24.7 : Calcoli del potenziale elettrico II

Electric Potential

1.6K Visualizzazioni

article

24.8 : Superfici equipotenziali e linee di campo

Electric Potential

3.6K Visualizzazioni

article

24.9 : Superfici equipotenziali e conduttori

Electric Potential

3.3K Visualizzazioni

article

24.10 : Determinazione del campo elettrico dal potenziale elettrico

Electric Potential

4.3K Visualizzazioni

article

24.11 : Equazione di Poisson e Laplace

Electric Potential

2.5K Visualizzazioni

article

24.12 : Generatore di Van de Graaff

Electric Potential

1.7K Visualizzazioni

article

24.14 : Condizioni al contorno elettrostatiche

Electric Potential

404 Visualizzazioni

article

24.15 : Secondo teorema di unicità

Electric Potential

966 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati