Accedi

The divergence of a vector is a measure of how much the vector spreads out (diverges) from a point. For example, an electric field vector diverges from the positive charge and converges at the negative charge. The divergence of an electric field is derived using Gauss's law and is equal to the charge density divided by the permittivity of space. Mathematically, it is expressed as

Equation1

If the divergence of an electric field is zero at a given point, the charge density at that point is also zero. The expression defines the sources of the electric field intensity and hence provides a method to calculate the electric field intensity.

The curl of a vector is a measure of how much the vector swirls around the point of observation. For static charges, the electric field lines do not circulate back on themselves; therefore, the curl of the electric field is zero. This can be expressed mathematically using Stokes' theorem, which states that the surface integral of the curl of an electric field equals the line integral of the electric field along a closed path. Now, since the line integral of the electric field along any closed path is zero, this implies that the curl of the electric field is also zero.

The electrostatic field is irrotational (curl-free) and has non-zero divergence for static charge distribution. This infers that the electrostatic field is generated by a scalar source alone, that is, a charge or a charge density.

Tags

DivergenceCurlElectric FieldGauss s LawCharge DensityPermittivity Of SpaceElectric Field IntensityStatic ChargesStokes TheoremElectrostatic FieldIrrotationalCharge Distribution

Dal capitolo 23:

article

Now Playing

23.13 : Divergence and Curl of Electric Field

Gauss's Law

5.1K Visualizzazioni

article

23.1 : Flusso elettrico

Gauss's Law

7.4K Visualizzazioni

article

23.2 : Calcolo del flusso elettrico

Gauss's Law

1.6K Visualizzazioni

article

23.3 : Legge di Gauss

Gauss's Law

6.8K Visualizzazioni

article

23.4 : Legge di Gauss: risoluzione dei problemi

Gauss's Law

1.5K Visualizzazioni

article

23.5 : Legge di Gauss: Simmetria sferica

Gauss's Law

7.1K Visualizzazioni

article

23.6 : Legge di Gauss: simmetria cilindrica

Gauss's Law

7.2K Visualizzazioni

article

23.7 : Legge di Gauss: Simmetria planare

Gauss's Law

7.6K Visualizzazioni

article

23.8 : Campo elettrico all'interno di un conduttore

Gauss's Law

5.7K Visualizzazioni

article

23.9 : Carica su un conduttore

Gauss's Law

4.4K Visualizzazioni

article

23.10 : Campo elettrico sulla superficie di un conduttore

Gauss's Law

4.5K Visualizzazioni

article

23.11 : Campo elettrico di una sfera non uniformemente caricata

Gauss's Law

1.4K Visualizzazioni

article

23.12 : Campo elettrico di piastre conduttrici parallele

Gauss's Law

765 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati