JoVE Logo

Accedi

The process of hypothesis testing based on the traditional method includes calculating the critical value, testing the value of the test statistic using the sample data, and interpreting these values.

First, a specific claim about the population parameter is decided based on the research question and is stated in a simple form. Further, an opposing statement to this claim is also stated. These statements can act as null and alternative hypotheses, out of which a null hypothesis would be a neutral statement while the alternative hypothesis can have a direction. The alternative hypothesis can also be the original claim if it involves a specific direction of the parameter.

Once the hypotheses are stated, they are expressed symbolically. As a convention, the null hypothesis would contain the equality symbol, while the alternative hypothesis may contain >, <, or ≠ symbols.

Before proceeding with hypothesis testing, an appropriate significance level must be decided. There is a general convention of choosing a 95% (i.e., 0.95) or 99% (i.e., 0.99) level. Here the αwould be 0.05 or 0.01, respectively.

Next, identify an appropriate test statistic. The proportion and mean (when population standard deviation is known) z statistic is preferred. For the mean, when population standard deviation is unknown, it is a t statistic, and for variance (or SD), it is a chi-square statistic.

Then, Calculate the critical value at the given significance level for the test statistic and plot the sampling distribution to observe the critical region. The critical value can be obtained from the z, t, and chi-square tables or electronically using statistical software.

Check if the test statistic falls within the critical region. If it falls within the critical region, reject the null hypothesis.

The decision about the claim about the property of the population or the general interpretation in this method does not require the P-value.

Tags

Hypothesis TestingTraditional MethodNull HypothesisAlternative HypothesisSignificance LevelTest StatisticZ StatisticT StatisticChi square StatisticCritical ValueCritical RegionSampling DistributionP value

Dal capitolo 9:

article

Now Playing

9.7 : Decision Making: Traditional Method

Hypothesis Testing

3.9K Visualizzazioni

article

9.1 : Che cos'è un'ipotesi?

Hypothesis Testing

9.8K Visualizzazioni

article

9.2 : Ipotesi nulle e alternative

Hypothesis Testing

7.8K Visualizzazioni

article

9.3 : Regione critica, valori critici e livello di significatività

Hypothesis Testing

11.6K Visualizzazioni

article

9.4 : Valore P

Hypothesis Testing

6.6K Visualizzazioni

article

9.5 : Tipi di verifica delle ipotesi

Hypothesis Testing

25.7K Visualizzazioni

article

9.6 : Processo decisionale: metodo del valore P

Hypothesis Testing

5.2K Visualizzazioni

article

9.8 : Ipotesi: accettare o non rifiutare?

Hypothesis Testing

27.3K Visualizzazioni

article

9.9 : Errori nei test di ipotesi

Hypothesis Testing

4.1K Visualizzazioni

article

9.10 : Testare un'affermazione sulla proporzione della popolazione

Hypothesis Testing

3.2K Visualizzazioni

article

9.11 : Verifica di un'affermazione sulla media: popolazione nota SD

Hypothesis Testing

2.7K Visualizzazioni

article

9.12 : Verifica di un'affermazione sulla media: popolazione sconosciuta SD

Hypothesis Testing

3.4K Visualizzazioni

article

9.13 : Verifica di un'affermazione sulla deviazione standard

Hypothesis Testing

2.4K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati