JoVE Logo

Accedi

The population standard deviation is rarely known in many day-to-day examples of statistics. When the sample sizes are large, it is easy to estimate the population standard deviation using a confidence interval, which provides results close enough to the original value. However, statisticians ran into problems when the sample size was small. A small sample size caused inaccuracies in the confidence interval.

The Student t distribution was developed by William S. Goset (1876–1937) of the Guinness brewery in Dublin, Ireland, to estimate the population standard deviation when the sample sizes were small. The name for this distribution comes from the pen name "Student" used by Gosset.

The Student t distribution is used whenever s is used to estimate σ. If a simple random sample of size n is drawn from an approximately normally distributed with mean μ and unknown population standard deviation σ and t scores are calculated, the t scores follow the Student t distribution with n – 1 degrees of freedom. The t score is interpreted similarly to the z score. It measures how far a value is from its mean μ. For each sample size n, there is a different Student t distribution.

The t score or statistic is given as follows:

Equation 1

Properties of the Student t distribution:

  1. The graph for the Student t distribution is similar to the standard normal curve.
  2. The mean for the Student t distribution is zero, and the distribution is symmetric about zero.
  3. The Student t distribution has more probability in its tails than the standard normal distribution because the spread of the t-distribution is greater than that of the standard normal. So the Student t distribution curve is thicker in the tails and shorter in the center than the graph of the standard normal distribution.
  4. The exact shape of the Student t distribution depends on the degrees of freedom. As the degrees of freedom increase, the graph of the Student t distribution becomes more like the graph of the standard normal distribution.
  5. The underlying population of individual observations is assumed to be normally distributed with an unknown population mean μ and unknown population standard deviation σ.

This text is adapted from Section 8.2, A Single Population Mean using the Student's t distribution, Introductory Statistics, Openstax,

Tags

Student T DistributionPopulation Standard DeviationConfidence IntervalSmall Sample SizeWilliam S GossetT ScoreDegrees Of FreedomNormal DistributionStatistical InferenceSymmetric DistributionProbability TailsMean Estimation

Dal capitolo 8:

article

Now Playing

8.3 : Student t Distribution

Distributions

5.8K Visualizzazioni

article

8.1 : Distribuzioni per stimare il parametro della popolazione

Distributions

4.0K Visualizzazioni

article

8.2 : Gradi di libertà

Distributions

3.0K Visualizzazioni

article

8.4 : Scegliere tra la distribuzione z e t

Distributions

2.7K Visualizzazioni

article

8.5 : Distribuzione del chi-quadrato

Distributions

3.4K Visualizzazioni

article

8.6 : Trovare i Valori Critici per il Chi-Quadrato

Distributions

2.8K Visualizzazioni

article

8.7 : Stima della deviazione standard della popolazione

Distributions

3.0K Visualizzazioni

article

8.8 : Test di bontà dell'adattamento

Distributions

3.2K Visualizzazioni

article

8.9 : Frequenze attese nei test di bontà dell'adattamento

Distributions

2.5K Visualizzazioni

article

8.10 : Tabella di contingenza

Distributions

2.4K Visualizzazioni

article

8.11 : Introduzione alla Prova di Indipendenza

Distributions

2.1K Visualizzazioni

article

8.12 : Test di ipotesi per il test di indipendenza

Distributions

3.4K Visualizzazioni

article

8.13 : Determinazione della frequenza prevista

Distributions

2.1K Visualizzazioni

article

8.14 : Test di omogeneità

Distributions

1.9K Visualizzazioni

article

8.15 : F Distribuzione

Distributions

3.6K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati