Accedi

When protons A and X are coupled, their nuclear spin energy levels are slightly modified. This is because the energy required to excite proton A to a spin state parallel to proton X is slightly different from the energy required for it to become anti-parallel to spin X. Consequently, there are two possible excitation frequencies for A (A1 and A2), depending on the spin state of X, and vice versa. The mutual nature of coupling implies that the difference between frequencies A1 and A2, indicated by JAX, equals the difference between the excitation frequencies for X, X1 and X2. Because both A and X have approximately equal populations in the spin-up and spin-down states, the number of A that are excited by frequency A1 is the same as the number of A that are excited by frequency A2. Similarly, equal numbers of X are excited by frequencies X1 and X2.

Indeed, the NMR signal for proton A is split into two peaks with equal intensity, centered at the chemical shift of A, and likewise for X. The peaks in each doublet are separated by JAX, the coupling constant, which ranges from 0–20 Hz for proton–proton coupling. For spin–spin coupling to occur, the nuclei have to be NMR-active, nonequivalent, and separated by three or fewer bonds. However, in some exceptional cases, coupling can occur between nuclei that are separated by more than three bonds.

Tags

1H NMRSignal MultiplicitySplitting PatternsNuclear SpinExcitation FrequenciesCoupling ConstantJAXProton CouplingNMR active NucleiSpin spin CouplingChemical ShiftDoublet Peaks

Dal capitolo 8:

article

Now Playing

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.9K Visualizzazioni

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

536 Visualizzazioni

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Visualizzazioni

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Visualizzazioni

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Visualizzazioni

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Visualizzazioni

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Visualizzazioni

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Visualizzazioni

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Visualizzazioni

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Visualizzazioni

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Visualizzazioni

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Visualizzazioni

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

838 Visualizzazioni

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

901 Visualizzazioni

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

896 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati