JoVE Logo

Accedi

Electron configurations and orbital diagrams can be determined by applying the Aufbau principle (each added electron occupies the subshell of lowest energy available), Pauli exclusion principle (no two electrons can have the same set of four quantum numbers), and Hund’s rule of maximum multiplicity (whenever possible, electrons retain unpaired spins in degenerate orbitals).

The relative energies of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). For various shells and subshells, the trend of penetrating power of an electron can be depicted as follows:

1s > 2s > 2p > 3s > 3p > 4s > 3d > 4p > 5s > 4d > 5p > 6s > 4f....

The effect of shielding and orbital penetration is large, and a 4s electron may have lower energy than a 3d electron.

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group.

There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. In the case of Cr and Cu, the half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that the electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. However, experimentally, its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms

Tags

Electron ConfigurationOrbital DiagramsAufbau PrinciplePauli Exclusion PrincipleHund s Rule Of Maximum MultiplicitySubshellsAtomic OrbitalsPenetrating Power Of An ElectronShieldingOrbital PenetrationValence ElectronsPeriodic TableFilling OrderPreferred Stability

Dal capitolo 1:

article

Now Playing

1.3 : Electron Configurations

Struttura e legami covalenti

16.0K Visualizzazioni

article

1.1 : Che cos'è la chimica organica?

Struttura e legami covalenti

69.2K Visualizzazioni

article

1.2 : Struttura elettronica degli atomi

Struttura e legami covalenti

20.7K Visualizzazioni

article

1.4 : Legami chimici

Struttura e legami covalenti

15.6K Visualizzazioni

article

1.5 : Legami covalenti polari

Struttura e legami covalenti

18.5K Visualizzazioni

article

1.6 : Strutture di Lewis e carica formale

Struttura e legami covalenti

13.8K Visualizzazioni

article

1.7 : Teoria VSEPR

Struttura e legami covalenti

8.7K Visualizzazioni

article

1.8 : Geometria molecolare e momento di dipolo

Struttura e legami covalenti

12.3K Visualizzazioni

article

1.9 : Risonanza e strutture ibride

Struttura e legami covalenti

16.1K Visualizzazioni

article

1.10 : Teoria dei legami di valenza e orbitali ibridi

Struttura e legami covalenti

18.5K Visualizzazioni

article

1.11 : La teoria degli orbitali molecolari e legame covalente

Struttura e legami covalenti

10.2K Visualizzazioni

article

1.12 : Legami intermolecolari e proprietà fisiche

Struttura e legami covalenti

20.2K Visualizzazioni

article

1.13 : Solubilità

Struttura e legami covalenti

17.1K Visualizzazioni

article

1.14 : Introduzione ai gruppi funzionali

Struttura e legami covalenti

24.8K Visualizzazioni

article

1.15 : Overview dei gruppi funzionali avanzati

Struttura e legami covalenti

22.7K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati