JoVE Logo

S'identifier

1.3 : Electron Configurations

Electron configurations and orbital diagrams can be determined by applying the Aufbau principle (each added electron occupies the subshell of lowest energy available), Pauli exclusion principle (no two electrons can have the same set of four quantum numbers), and Hund’s rule of maximum multiplicity (whenever possible, electrons retain unpaired spins in degenerate orbitals).

The relative energies of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). For various shells and subshells, the trend of penetrating power of an electron can be depicted as follows:

1s > 2s > 2p > 3s > 3p > 4s > 3d > 4p > 5s > 4d > 5p > 6s > 4f....

The effect of shielding and orbital penetration is large, and a 4s electron may have lower energy than a 3d electron.

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group.

There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. In the case of Cr and Cu, the half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that the electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. However, experimentally, its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms

Tags

Electron ConfigurationOrbital DiagramsAufbau PrinciplePauli Exclusion PrincipleHund s Rule Of Maximum MultiplicitySubshellsAtomic OrbitalsPenetrating Power Of An ElectronShieldingOrbital PenetrationValence ElectronsPeriodic TableFilling OrderPreferred Stability

Du chapitre 1:

article

Now Playing

1.3 : Electron Configurations

Liaison covalente et structure

16.1K Vues

article

1.1 : Qu'est-ce que la chimie organique ?

Liaison covalente et structure

70.3K Vues

article

1.2 : Structure électronique des atomes

Liaison covalente et structure

20.8K Vues

article

1.4 : Liaisons chimiques

Liaison covalente et structure

15.7K Vues

article

1.5 : Liaisons covalentes polaires

Liaison covalente et structure

18.6K Vues

article

1.6 : Structures de Lewis et charges formelles

Liaison covalente et structure

13.8K Vues

article

1.7 : Théorie VSEPR

Liaison covalente et structure

8.8K Vues

article

1.8 : Géométrie moléculaire et moments dipolaires

Liaison covalente et structure

12.4K Vues

article

1.9 : Résonance et structure des hybrides

Liaison covalente et structure

16.3K Vues

article

1.10 : Théorie de la liaison de valence et modèle des orbitales hybrides

Liaison covalente et structure

18.5K Vues

article

1.11 : Théorie de l'orbitale moléculaire (TOM) et liaison covalente

Liaison covalente et structure

10.2K Vues

article

1.12 : Forces intermoléculaires et propriétés physiques

Liaison covalente et structure

20.2K Vues

article

1.13 : Solubilité

Liaison covalente et structure

17.1K Vues

article

1.14 : Introduction aux groupes fonctionnels

Liaison covalente et structure

25.0K Vues

article

1.15 : Présentation des groupes fonctionnels avancés

Liaison covalente et structure

23.0K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.