S'identifier

A three-dimensional force system refers to a scenario in which three forces act simultaneously in three different directions. This type of problem is commonly encountered in physics and engineering, where it is necessary to calculate the resultant force on the system, which can then be used to predict or analyze the behavior of the object or structure under consideration.

To solve a three-dimensional force system, first resolve each force into its respective scalar components. Do this using trigonometric functions and the principles of vector addition. Once each force is resolved into its components, add the respective components of all three forces vectorially to obtain the resultant force.

Another important aspect to consider when solving a three-dimensional force system is choosing a coordinate system. A Cartesian coordinate system is a frequently used reference system, which allows us to determine the direction and magnitude of each force with respect to the x, y, and z axes. Sometimes it is also necessary to use spherical or cylindrical coordinate systems depending on the nature of the problem.

The magnitude of the resultant force is calculated as the square root of the sum of the squares of all three forces acting along their respective directions. This gives the overall strength of the force acting on the system.

Tags

Three dimensional Force SystemResultant ForceScalar ComponentsTrigonometric FunctionsVector AdditionCoordinate SystemCartesian Coordinate SystemSpherical Coordinate SystemCylindrical Coordinate SystemMagnitude Of Resultant Force

Du chapitre 2:

article

Now Playing

2.12 : Three-Dimensional Force System:Problem Solving

Force Vectors

572 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.1K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

429 Vues

article

2.4 : Force Classification

Force Vectors

1.0K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

549 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

813 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

497 Vues

article

2.8 : Notation scalaire

Force Vectors

605 Vues

article

2.9 : Notation vectorielle cartésienne

Force Vectors

667 Vues

article

2.10 : Cosinus directeurs d’un vecteur

Force Vectors

381 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

1.9K Vues

article

2.13 : Vecteurs de position

Force Vectors

676 Vues

article

2.14 : Vecteur de force le long d’une droite

Force Vectors

430 Vues

article

2.15 : Produit scalaire

Force Vectors

249 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.