S'identifier

In the case of circular motion, the linear tangential speed of a particle at a radius from the axis of rotation is related to the angular velocity by the relation:

Equation1

This could also apply to points on a rigid body rotating about a fixed axis. In a circular motion, both uniform and nonuniform, there exists a centripetal acceleration. The centripetal acceleration vector points inward from the particle executing circular motion toward the axis of rotation. In uniform circular motion, when the angular velocity is constant and the angular acceleration is zero, we observe a linear acceleration—that is, centripetal acceleration—since the tangential speed is constant. If the circular motion is nonuniform, then the rotating system has an angular acceleration, and we have both a linear centripetal acceleration and linear tangential acceleration.

The centripetal acceleration is due to a change in the direction of tangential velocity, whereas the tangential acceleration is due to any change in the magnitude of the tangential velocity. The tangential and centripetal acceleration vectors are always perpendicular to each other. To complete this description, a total linear acceleration vector is assigned to a point on a rotating rigid body or a particle executing circular motion at a radius r from a fixed axis. The total linear acceleration vector is the vector sum of the centripetal and tangential accelerations. The total linear acceleration vector in the case of nonuniform circular motion points at an angle between the centripetal and tangential acceleration vectors.

This text is adapted from Openstax, University Physics Volume 1, Section 10.3: Relating Angular and Translational Quantities.

Tags

Keyword Extraction Circular MotionLinear Tangential SpeedAngular VelocityCentripetal AccelerationUniform Circular MotionAngular AccelerationLinear Centripetal AccelerationLinear Tangential AccelerationTotal Linear Acceleration VectorTranslational Quantities

Du chapitre 10:

article

Now Playing

10.6 : Relating Angular And Linear Quantities - II

Rotation et systèmes matériels

5.2K Vues

article

10.1 : Vitesse angulaire et déplacement

Rotation et systèmes matériels

13.0K Vues

article

10.2 : Vitesse angulaire et accélération

Rotation et systèmes matériels

8.6K Vues

article

10.3 : Mouvement de rotation uniformément varié - I

Rotation et systèmes matériels

6.5K Vues

article

10.4 : Mouvement de rotation uniformément varié - II

Rotation et systèmes matériels

5.8K Vues

article

10.5 : Établir une relation entre le mouvement linéaire et le mouvement angulaire - I

Rotation et systèmes matériels

6.3K Vues

article

10.7 : Moment d'inertie

Rotation et systèmes matériels

10.3K Vues

article

10.8 : Moment d'inertie et énergie cinétique de rotation

Rotation et systèmes matériels

7.0K Vues

article

10.9 : Moment d'inertie : calculs

Rotation et systèmes matériels

6.5K Vues

article

10.10 : Moment d'inertie d'un solide composé

Rotation et systèmes matériels

5.9K Vues

article

10.11 : Théorème des axes parallèles (théorème de Huygens)

Rotation et systèmes matériels

6.3K Vues

article

10.12 : Théorème de l’axe perpendiculaire

Rotation et systèmes matériels

2.5K Vues

article

10.13 : Transformation vectorielle dans les systèmes de coordonnées en rotation

Rotation et systèmes matériels

1.3K Vues

article

10.14 : Coriolis Force

Rotation et systèmes matériels

2.8K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.