JoVE Logo

S'identifier

For many years, scientists thought that enzyme-substrate binding took place in a simple "lock-and-key" fashion. This model stated that the enzyme and substrate fit together perfectly in one instantaneous step. However, current research supports a more refined view scientists call induced fit. The induced-fit model expands upon the lock-and-key model by describing a more dynamic interaction between enzyme and substrate. As the enzyme and substrate come together, their interaction causes a mild shift in the enzyme's structure that confirms an ideal binding arrangement between the enzyme and the substrate's transition state. This ideal binding maximizes the enzyme's ability to catalyze its reaction.

The active sites of enzymes are suited to provide specific environmental conditions and are also subject to local environmental influences. Increasing the environmental temperature generally increases reaction rates, enzyme-catalyzed or otherwise. However, increasing or decreasing the temperature outside of an optimal range can affect chemical bonds within the active site to influence substrate binding. High temperatures will eventually cause enzymes, like other biological molecules, to denature, changing the substance's natural properties. Likewise, the local environment's pH can also affect enzyme function. Active site amino acid residues have their own acidic or basic properties optimal for catalysis. Enzymes function optimally within a specific pH range, and altering the temperature or acidic or basic nature can affect the catalytic activity.

Many enzymes don't work optimally, or even at all, unless bound to other specific non-protein helper molecules, either temporarily through ionic or hydrogen bonds or permanently through stronger covalent bonds. Two types of helper molecules are cofactors and coenzymes. Binding to these molecules promotes optimal conformation and function for their respective enzymes. Cofactors are inorganic ions such as iron (Fe2+) and magnesium (Mg2+). For example, DNA polymerase requires a bound zinc ion (Zn2+) to function. Coenzymes are organic helper molecules with a basic atomic structure comprised of carbon and hydrogen, required for enzyme action. The most common sources of coenzymes are dietary vitamins. Some vitamins are precursors to coenzymes, and others act directly as coenzymes.

This text is adapted from Openstax, Biology 2e, Section 6.5 Enzymes

Tags

Enzyme CatalysisLock and key ModelInduced fit ModelActive SiteTemperaturePHCofactorsCoenzymesVitaminsDNA Polymerase

Du chapitre 3:

article

Now Playing

3.16 : Introduction to Mechanisms of Enzyme Catalysis

Énergie et catalyse

7.8K Vues

article

3.1 : La première loi de la thermodynamique

Énergie et catalyse

5.3K Vues

article

3.2 : La seconde loi de la thermodynamique

Énergie et catalyse

5.0K Vues

article

3.3 : Enthalpie au sein de la cellule

Énergie et catalyse

5.7K Vues

article

3.4 : Entropie au sein de la cellule

Énergie et catalyse

10.2K Vues

article

3.5 : Une introduction à l'enthalpie libre

Énergie et catalyse

8.0K Vues

article

3.6 : Réactions endergoniques et exergoniques dans la cellule

Énergie et catalyse

14.3K Vues

article

3.7 : La constante d'équilibre des liaisons et la force des liaisons

Énergie et catalyse

8.9K Vues

article

3.8 : Énergie libre et équilibre

Énergie et catalyse

6.0K Vues

article

3.9 : Les conditions hors équilibre dans la cellule

Énergie et catalyse

4.1K Vues

article

3.10 : Oxydation et réduction des molécules organiques

Énergie et catalyse

5.9K Vues

article

3.11 : Introduction aux enzymes

Énergie et catalyse

16.8K Vues

article

3.12 : Enzymes et énergie d'activation

Énergie et catalyse

11.4K Vues

article

3.13 : Introduction à la cinétique enzymatique

Énergie et catalyse

19.4K Vues

article

3.14 : Constante catalytique et efficacité

Énergie et catalyse

9.7K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.