JoVE Logo

Iniciar sesión

8.1 : Base-pairing and DNA Repair

Las reglas de Erwin Chargaff sobre la equivalencia del ADN allanaron el camino para el descubrimiento del emparejamiento de bases en el ADN. Las reglas de Chargaff afirman que en una molécula de ADN de doble cadena,

  1. La cantidad de adenina (A) es igual a la cantidad de timina (T);
  2. La cantidad de guanina (G) es igual a la cantidad de citosina (C); y.
  3. La suma de purinas, A y G, es igual a la suma de pirimidinas, C y T (es decir, A+G = C+T).

Un trabajo posterior de Watson y Crick reveló que en el ADN de doble cadena, A siempre forma dos enlaces de hidrógeno con T, y G siempre forma tres enlaces de hidrógeno con C. Esta combinación de bases mantiene una anchura constante de la doble hélice de ADN, ya que los pares A-T y C-G tienen una longitud de 10.85Å y encajan perfectamente entre los dos esqueletos de azúcar-fosfato.

Los pares de bases hacen que las bases nitrogenadas sean inaccesibles a otras moléculas hasta que los puentes de hidrógeno se rompan. Sin embargo, las enzimas específicas pueden romper fácilmente estos puentes de hidrógeno para llevar a cabo los procesos celulares necesarios, como la replicación y la transcripción del ADN. Como un par G-C tiene más puentes de hidrógeno que un par A-T, el ADN con un alto porcentaje de pares G-C necesitará mayor energía para la separación de dos hebras de ADN que uno con un porcentaje similar de pares A-T.

Análogos de base como Medicina

El emparejamiento correcto de la base es esencial para la replicación fiel del ADN. Los análogos de base son moléculas que pueden reemplazar las bases de ADN estándar durante la replicación del ADN. Estos análogos son agentes antivirales y anticancerosos eficaces contra enfermedades como la hepatitis, el herpes y la leucemia. El aciclovir, también conocido como acicloguanosina, es un análogo de base de la guanina y se usa comúnmente en el tratamiento del virus del herpes simple. La parte guanina del aciclovir se empareja con adenina como de costumbre durante la replicación del ADN; sin embargo, debido a que no tiene un extremo 3’ del nucleótido, la ADN polimerasa no puede continuar formando pares de bases y la replicación termina.

Tags

Base pairingDNA RepairGenetic StabilityNucleotide ExcisionBase ExcisionHomologous RecombinationDNA DamageMolecular Biology

Del capítulo 8:

article

Now Playing

8.1 : Base-pairing and DNA Repair

Replicación y corrección del ADN

26.6K Vistas

article

8.2 : La horquilla de replicación del ADN

Replicación y corrección del ADN

14.6K Vistas

article

8.3 : Síntesis de hebras rezagadas

Replicación y corrección del ADN

12.8K Vistas

article

8.4 : El Replicoso

Replicación y corrección del ADN

6.1K Vistas

article

8.5 : Corrección de errores

Replicación y corrección del ADN

6.1K Vistas

article

8.6 : Replicación en procariotas

Replicación y corrección del ADN

23.9K Vistas

article

8.7 : Replicación en eucariotas

Replicación y corrección del ADN

12.9K Vistas

article

8.8 : Telómeros y telomerasa

Replicación y corrección del ADN

5.0K Vistas

article

8.9 : Descripción general de la reparación del ADN

Replicación y corrección del ADN

7.4K Vistas

article

8.10 : Reparación de escisión de la base

Replicación y corrección del ADN

3.5K Vistas

article

8.11 : Reparación por escisión de nucleótido

Replicación y corrección del ADN

3.4K Vistas

article

8.12 : Reparación de emparejamiento erróneo

Replicación y corrección del ADN

4.7K Vistas

article

8.13 : Fijación de roturas de doble hebra

Replicación y corrección del ADN

3.0K Vistas

article

8.14 : Recombinación homóloga

Replicación y corrección del ADN

4.3K Vistas

article

8.15 : Conversión génica

Replicación y corrección del ADN

2.2K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados