Iniciar sesión

If angular acceleration is constant, then we can simplify equations of rotational kinematics, similar to the equations of linear kinematics. This simplified set of equations can be used to describe many applications in physics and engineering where the angular acceleration of a system is constant.

Using our intuition, we can begin to see how rotational quantities such as angular displacement, angular velocity, angular acceleration, and time are related to one another. For example, if a flywheel has an angular acceleration in the same direction as its angular velocity vector, its angular velocity increases with time, as does its angular displacement. On the contrary, if the angular acceleration is opposite in direction to the angular velocity vector, its angular velocity decreases with time. These physical situations, along with many others, can be described with a consistent set of rotational kinematic equations under constant angular acceleration. The method to investigate rotational motion in this way is called kinematics of rotational motion.

To begin, note that if a system is rotating under constant acceleration, then the average angular velocity follows a simple relation, because the angular velocity is increasing linearly with time. The average angular velocity is simply half the sum of the initial and final values. From this, an equation relating the angular position, average angular velocity, and time can be obtained.

This text is adapted from Openstax, University Physics Volume 1, Section 10.2: Rotational with Constant Angular Acceleration.

Tags

Angular DisplacementAngular VelocityAngular AccelerationConstant Angular AccelerationRotational KinematicsAverage Angular VelocityLinear RelationshipRotational Motion

Del capítulo 10:

article

Now Playing

10.3 : Rotación con aceleración angular constante - I

Rotación y cuerpos rígidos

6.5K Vistas

article

10.1 : Velocidad angular y desplazamiento

Rotación y cuerpos rígidos

13.0K Vistas

article

10.2 : Velocidad angular y aceleración

Rotación y cuerpos rígidos

8.6K Vistas

article

10.4 : Rotación con aceleración angular constante - II

Rotación y cuerpos rígidos

5.8K Vistas

article

10.5 : Relacionando magnitudes angulares y lineales - I

Rotación y cuerpos rígidos

6.3K Vistas

article

10.6 : Relacionando magnitudes angulares y lineales - II

Rotación y cuerpos rígidos

5.2K Vistas

article

10.7 : Momento de inercia

Rotación y cuerpos rígidos

10.3K Vistas

article

10.8 : Momento de inercia y energía cinética rotacional

Rotación y cuerpos rígidos

7.0K Vistas

article

10.9 : Momento de inercia: cálculos

Rotación y cuerpos rígidos

6.5K Vistas

article

10.10 : Momentos de inercia de objetos compuestos

Rotación y cuerpos rígidos

5.9K Vistas

article

10.11 : Teorema de los ejes paralelos

Rotación y cuerpos rígidos

6.3K Vistas

article

10.12 : Teorema del eje perpendicular

Rotación y cuerpos rígidos

2.5K Vistas

article

10.13 : Transformación vectorial en sistemas de coordenadas rotatorias

Rotación y cuerpos rígidos

1.3K Vistas

article

10.14 : Fuerza de Coriolis

Rotación y cuerpos rígidos

2.8K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados