JoVE Logo

Iniciar sesión

3.9 : Célula fuera del equilibrio

An important concept in studying metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction. The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively. Reactants within a closed system will undergo chemical reactions in both directions until they reach a state of equilibrium, which is one of the lowest possible free energy and a state of maximal entropy. To push the reactants and products away from a state of equilibrium requires energy. Either reactants or products must be added, removed, or changed.

If a cell were a closed system, its chemical reactions would reach equilibrium, and it would die because there would be insufficient free energy left to perform the necessary work to maintain life. In a living cell, chemical reactions are constantly moving towards equilibrium, but never reach it. This is because a living cell is an open system. Materials pass in and out, the cell recycles the products of certain chemical reactions into other reactions, and there is never chemical equilibrium. In this way, living organisms are in a constant energy-requiring, uphill battle against equilibrium and entropy. This constant energy supply ultimately comes from sunlight, which produces nutrients in the photosynthesis process.

Steady state refers to the relatively stable internal environment required to maintain life. In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain homeostatic internal conditions within a narrow range almost constantly, despite environmental changes, by activation of regulatory mechanisms. For example, an organism needs to regulate body temperature through the thermoregulation process.

This text is adapted from Openstax, Biology 2e, Section 6.2 Potential, Kinetic, Free, and Activation Energy Section and 1.2 Themes and Concepts of Biology.

Tags

Artificial IntelligenceAI Writing AssistantContent GenerationCopywritingAI generated Content

Del capítulo 3:

article

Now Playing

3.9 : Célula fuera del equilibrio

Energía y catálisis

4.1K Vistas

article

3.1 : La primera ley de la termodinámica

Energía y catálisis

5.5K Vistas

article

3.2 : La segunda ley de la termodinámica

Energía y catálisis

5.1K Vistas

article

3.3 : Entalpía en el interior de la célula

Energía y catálisis

5.8K Vistas

article

3.4 : Entropía en el interior de la célula

Energía y catálisis

10.3K Vistas

article

3.5 : Una introducción a la energía libre

Energía y catálisis

8.2K Vistas

article

3.6 : Reacciones endergónicas y exergónicas en la célula

Energía y catálisis

14.7K Vistas

article

3.7 : La constante de unión de equilibrio y la fuerza de unión

Energía y catálisis

9.0K Vistas

article

3.8 : Energía libre y equilibrio

Energía y catálisis

6.0K Vistas

article

3.10 : Oxidación y reducción de moléculas orgánicas

Energía y catálisis

6.1K Vistas

article

3.11 : Introducción a las enzimas

Energía y catálisis

17.0K Vistas

article

3.12 : Enzimas y energía de activación

Energía y catálisis

11.6K Vistas

article

3.13 : Introducción a la cinética enzimática

Energía y catálisis

19.6K Vistas

article

3.14 : Número de recambio y eficacia catalítica

Energía y catálisis

9.9K Vistas

article

3.15 : Enzimas catalíticamente perfectas

Energía y catálisis

3.9K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados